Chaofeng Yan , Yang Han , Ensheng Zhao , Yuxiang Liu , Ping Yang , Congling Wang , Amr S. Zalhaf
{"title":"Multi-timescale modeling and order reduction towards stability analysis of isolated microgrids","authors":"Chaofeng Yan , Yang Han , Ensheng Zhao , Yuxiang Liu , Ping Yang , Congling Wang , Amr S. Zalhaf","doi":"10.1016/j.compeleceng.2024.109835","DOIUrl":null,"url":null,"abstract":"<div><div>Microgrids incorporate a significant proportion of renewable energy sources and power electronic converters in the energy conversion process, creating a sustainable and clean energy infrastructure. However, the multi-timescale dynamics of microgrids are interactively coupled under a nonlinear structure, which makes it difficult to gain insight into the instability mechanisms without a high-fidelity reduced-order model that preserves the main dynamic behaviors of the system. For the isolated AC microgrid dominated by voltage source inverters (VSI), a detailed state-space model of the system, including the inverter, network, and load, is first developed. Based on this model, the eigenvalue analysis is carried out, and a participation factor analysis tool is also utilized to identify the relevant dynamics that have a strong impact on the system's dominant mode. Furthermore, to simplify the system modeling process without losing essential dynamic interactions, a novel multi-timescale coupled reduced-order model is proposed using a transfer function-based order reduction method, which retains the open-loop gain characteristics to preserve the critical couplings between fast inner loop dynamics and slow droop control dynamics. Finally, the accuracy of the reduced-order model is verified by comparing it with the detailed model and the conventional singular perturbation reduced-order model through eigenvalue distribution and time-domain simulation analysis.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109835"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007626","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Microgrids incorporate a significant proportion of renewable energy sources and power electronic converters in the energy conversion process, creating a sustainable and clean energy infrastructure. However, the multi-timescale dynamics of microgrids are interactively coupled under a nonlinear structure, which makes it difficult to gain insight into the instability mechanisms without a high-fidelity reduced-order model that preserves the main dynamic behaviors of the system. For the isolated AC microgrid dominated by voltage source inverters (VSI), a detailed state-space model of the system, including the inverter, network, and load, is first developed. Based on this model, the eigenvalue analysis is carried out, and a participation factor analysis tool is also utilized to identify the relevant dynamics that have a strong impact on the system's dominant mode. Furthermore, to simplify the system modeling process without losing essential dynamic interactions, a novel multi-timescale coupled reduced-order model is proposed using a transfer function-based order reduction method, which retains the open-loop gain characteristics to preserve the critical couplings between fast inner loop dynamics and slow droop control dynamics. Finally, the accuracy of the reduced-order model is verified by comparing it with the detailed model and the conventional singular perturbation reduced-order model through eigenvalue distribution and time-domain simulation analysis.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.