Asad Ali , Muhammad Assam , Faheem Ullah Khan , Yazeed Yasin Ghadi , Zhumazhan Nurdaulet , Alibiyeva Zhibek , Syed Yaqub Shah , Tahani Jaser Alahmadi
{"title":"An optimized multilayer perceptron-based network intrusion detection using Gray Wolf Optimization","authors":"Asad Ali , Muhammad Assam , Faheem Ullah Khan , Yazeed Yasin Ghadi , Zhumazhan Nurdaulet , Alibiyeva Zhibek , Syed Yaqub Shah , Tahani Jaser Alahmadi","doi":"10.1016/j.compeleceng.2024.109838","DOIUrl":null,"url":null,"abstract":"<div><div>The exponential growth in the use of network services through the design of various network infrastructures, has led to increased complexities and challenges in the network. A major problem in computer networks is privacy and security breach. Cyber attackers exploit loopholes to infiltrate and disrupt the operation of the network through various attacks. Anomaly-based intrusion detection often employs Artificial Neural Network techniques like Multi-layer Perceptron (MLP) to classify malicious and legitimate traffic. Nevertheless, these techniques are vulnerable to overfitting and require extensive labeled data and computational resources. Consequently, this reduces the accuracy of intrusion detection systems and increases the error detection rate. To minimize the error detection rate of the intrusion detection system, it is necessary to optimize the connection parameters of the MLP neural network such as weights and biases. To this end, we proposed an optimized MLP-based Intrusion Detection using Gray Wolf Optimization (GWOMLP-IDS) to optimize the learning process of the MLP neural network by optimizing weights and biases. GWO aims to select an optimal connection parameter during the learning process to minimize the error rate of intrusion detection. Extensive simulations in Python reveal the effectiveness of the proposed approach in terms of designated performance metrics.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109838"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007651","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The exponential growth in the use of network services through the design of various network infrastructures, has led to increased complexities and challenges in the network. A major problem in computer networks is privacy and security breach. Cyber attackers exploit loopholes to infiltrate and disrupt the operation of the network through various attacks. Anomaly-based intrusion detection often employs Artificial Neural Network techniques like Multi-layer Perceptron (MLP) to classify malicious and legitimate traffic. Nevertheless, these techniques are vulnerable to overfitting and require extensive labeled data and computational resources. Consequently, this reduces the accuracy of intrusion detection systems and increases the error detection rate. To minimize the error detection rate of the intrusion detection system, it is necessary to optimize the connection parameters of the MLP neural network such as weights and biases. To this end, we proposed an optimized MLP-based Intrusion Detection using Gray Wolf Optimization (GWOMLP-IDS) to optimize the learning process of the MLP neural network by optimizing weights and biases. GWO aims to select an optimal connection parameter during the learning process to minimize the error rate of intrusion detection. Extensive simulations in Python reveal the effectiveness of the proposed approach in terms of designated performance metrics.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.