Hamed Abderrahime Bouzid , Mohammed Belkheir , Allel Mokaddem , Mehdi Rouissat , Djamila Ziani
{"title":"Enhancing the performance of graphene and LCP 1x2 rectangular microstrip antenna arrays for terahertz applications using photonic band gap structures","authors":"Hamed Abderrahime Bouzid , Mohammed Belkheir , Allel Mokaddem , Mehdi Rouissat , Djamila Ziani","doi":"10.1016/j.compeleceng.2024.109858","DOIUrl":null,"url":null,"abstract":"<div><div>The terahertz (THz) frequency band (0.1–10 THz) has drawn a lot of attention due to the growing demand for greater resolutions, lower latency, faster data rates, and wider bandwidth in 6 G technologies. This range provides data speeds exceeding tens of gigabits per second, large bandwidth, great spectral resolution, and non-ionizing characteristics. THz signals have potential; however they are affected by attenuation, route losses, and atmospheric conditions, necessitating the use of specialised antenna designs. This work presents a 300 GHz rectangular microstrip patch antenna with Graphene as the patch material and Liquid Crystal Polymer (LCP) as the substrate. Photonic band gap (PBG) substrates are used to incorporate cuboid and cylindrical air gaps in square and triangular lattices, hence improving performance. The highest performance is found with cylindrical air gaps in a triangular lattice PBG substrate, which has a bandwidth of 29.56 GHz, a return loss of –48.12 dB, a gain of 10.4 dBi, a directivity of 10.8 dBi, and a radiation efficiency of 91 %. These results establish the proposed antennas as highly effective for broadband and high-speed THz applications, particularly in 6 G systems like advanced sensing applications, ultra-fast device-to-device (D2D) communications, potential beam steering applications, and non-invasive imaging solutions.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109858"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007857","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The terahertz (THz) frequency band (0.1–10 THz) has drawn a lot of attention due to the growing demand for greater resolutions, lower latency, faster data rates, and wider bandwidth in 6 G technologies. This range provides data speeds exceeding tens of gigabits per second, large bandwidth, great spectral resolution, and non-ionizing characteristics. THz signals have potential; however they are affected by attenuation, route losses, and atmospheric conditions, necessitating the use of specialised antenna designs. This work presents a 300 GHz rectangular microstrip patch antenna with Graphene as the patch material and Liquid Crystal Polymer (LCP) as the substrate. Photonic band gap (PBG) substrates are used to incorporate cuboid and cylindrical air gaps in square and triangular lattices, hence improving performance. The highest performance is found with cylindrical air gaps in a triangular lattice PBG substrate, which has a bandwidth of 29.56 GHz, a return loss of –48.12 dB, a gain of 10.4 dBi, a directivity of 10.8 dBi, and a radiation efficiency of 91 %. These results establish the proposed antennas as highly effective for broadband and high-speed THz applications, particularly in 6 G systems like advanced sensing applications, ultra-fast device-to-device (D2D) communications, potential beam steering applications, and non-invasive imaging solutions.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.