Development of a liquid crystal-based sensor utilizing EDTA-cyclodextrin polymer for real-time optical detection of methylene blue in natural water samples
{"title":"Development of a liquid crystal-based sensor utilizing EDTA-cyclodextrin polymer for real-time optical detection of methylene blue in natural water samples","authors":"Madeeha Rashid , Satyabratt Pandey , Aradhana Chaudhary , Vishal Singh , Garima Singh , Rohit Verma , Krishna Kumar , Sachin Kumar Singh","doi":"10.1016/j.molliq.2024.126479","DOIUrl":null,"url":null,"abstract":"<div><div>The discharge of dyes in industrial wastewater poses significant environmental and health risks when released into natural water resources. In this study, we report the development of an EDTA-crosslinked cyclodextrin polymer (ECDP)-based sensor for the real-time, naked-eye detection of hazardous methylene blue (MB) dye in aqueous solutions and natural water samples. The sensor functions via a competitive host–guest inclusion mechanism involving sodium dodecyl sulphate (SDS) and ECDP, which modulates the alignment of liquid crystals (LCs). Initially, SDS induces homeotropic ordering at the fluid interface, but when complexed with ECDP, it causes a tilted LC alignment. Upon the introduction of MB, SDS is displaced from the ECDP cavity and re-adsorbs at the LC/aqueous interface, triggering an orientational transition from tilted to homeotropic. This transition is clearly observed as a distinct bright-to-dark shift under crossed polarizers. The host–guest (ECDP/MB) inclusion complexation mechanism was further confirmed by FT-IR, XRPD, and DSC analyses. The developed sensor exhibits high selectivity for MB in dye-contaminated natural water samples and sensitivity to MB concentrations upto 0.10 mM. This study demonstrates the potential of cyclodextrin-based polymers for liquid crystal sensing applications, offering promising pathways for future developments in environmental monitoring.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"416 ","pages":"Article 126479"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732224025388","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The discharge of dyes in industrial wastewater poses significant environmental and health risks when released into natural water resources. In this study, we report the development of an EDTA-crosslinked cyclodextrin polymer (ECDP)-based sensor for the real-time, naked-eye detection of hazardous methylene blue (MB) dye in aqueous solutions and natural water samples. The sensor functions via a competitive host–guest inclusion mechanism involving sodium dodecyl sulphate (SDS) and ECDP, which modulates the alignment of liquid crystals (LCs). Initially, SDS induces homeotropic ordering at the fluid interface, but when complexed with ECDP, it causes a tilted LC alignment. Upon the introduction of MB, SDS is displaced from the ECDP cavity and re-adsorbs at the LC/aqueous interface, triggering an orientational transition from tilted to homeotropic. This transition is clearly observed as a distinct bright-to-dark shift under crossed polarizers. The host–guest (ECDP/MB) inclusion complexation mechanism was further confirmed by FT-IR, XRPD, and DSC analyses. The developed sensor exhibits high selectivity for MB in dye-contaminated natural water samples and sensitivity to MB concentrations upto 0.10 mM. This study demonstrates the potential of cyclodextrin-based polymers for liquid crystal sensing applications, offering promising pathways for future developments in environmental monitoring.
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.