{"title":"Advancing photovoltaic system design: An enhanced social learning swarm optimizer with guaranteed stability","authors":"Lingyun Deng, Sanyang Liu","doi":"10.1016/j.compind.2024.104209","DOIUrl":null,"url":null,"abstract":"<div><div>Parameter estimation of photovoltaic (PV) models, mathematically, is a typical complicated nonlinear multimodal optimization problem with box constraints. Although various methodologies have been explored in the literature, their performance tends to be unstable owing to inadequate adaptability. In this paper, an enhanced social learning swarm optimizer (ESLPSO) is developed to achieve more reliable parameter estimation in PV models. Firstly, using the non-stagnant distribution assumption, we obtain a sufficient and necessary condition to guarantee the stability of the basic social learning swarm optimizer (SLPSO). Secondly, a nonlinear control coefficient is introduced to balance convergence and diversity. Finally, an interactive learning mechanism is devised to preserve population diversity. The efficacy of ESLPSO is validated using three extensively applied PV models and several scalable optimization problems. Statistical outcomes highlight the robustness and competitiveness of ESLPSO compared to other state-of-the-art methodologies.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"164 ","pages":"Article 104209"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524001374","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Parameter estimation of photovoltaic (PV) models, mathematically, is a typical complicated nonlinear multimodal optimization problem with box constraints. Although various methodologies have been explored in the literature, their performance tends to be unstable owing to inadequate adaptability. In this paper, an enhanced social learning swarm optimizer (ESLPSO) is developed to achieve more reliable parameter estimation in PV models. Firstly, using the non-stagnant distribution assumption, we obtain a sufficient and necessary condition to guarantee the stability of the basic social learning swarm optimizer (SLPSO). Secondly, a nonlinear control coefficient is introduced to balance convergence and diversity. Finally, an interactive learning mechanism is devised to preserve population diversity. The efficacy of ESLPSO is validated using three extensively applied PV models and several scalable optimization problems. Statistical outcomes highlight the robustness and competitiveness of ESLPSO compared to other state-of-the-art methodologies.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.