MBGB-detector: A multi-branch gradient backhaul lightweight model for mini-LED surface defect detection

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yuanda Lin , Shuwan Pan , Jie Yu , Yade Hong , Fuming Wang , Jianeng Tang , Lixin Zheng , Songyan Chen
{"title":"MBGB-detector: A multi-branch gradient backhaul lightweight model for mini-LED surface defect detection","authors":"Yuanda Lin ,&nbsp;Shuwan Pan ,&nbsp;Jie Yu ,&nbsp;Yade Hong ,&nbsp;Fuming Wang ,&nbsp;Jianeng Tang ,&nbsp;Lixin Zheng ,&nbsp;Songyan Chen","doi":"10.1016/j.compind.2024.104204","DOIUrl":null,"url":null,"abstract":"<div><div>To meet the growing demand for lightweight models and rapid defect detection in mini-light emitting diode (LED) chip manufacturing, we developed a highly efficient and lightweight multi-branch gradient backhaul (MBGB) block. Based on the MBGB block, a mini-LED surface defect detector was designed, which included an MBGB network (MBGB-net) for the backbone and an MBGB feature pyramid network (MBGB-FPN) for the feature fusion networks. MBGB-net was introduced to reduce resource utilisation and achieve efficient information flow while enhancing defect feature extraction from mini-LED wafers. MBGB-FPN optimises the parameter utilisation, thereby reducing the demand for computational resources while maintaining, or even improving, the detection accuracy. Furthermore, a partial convolution module is integrated into the detection head to reduce the computational overhead and improve the detection speed. The experimental results demonstrated that the method achieved optimal performance in terms of both accuracy and speed. On the mini-LED wafer defect dataset, it achieved an mAP50 of 87.2% with only 9.3M parameters and 21.6G FLOPs, reaching an impressive FPS of 345.4. Furthermore, on the NEU-DET dataset, an mAP50 of 77.5% was achieved using the same parameters and FLOPs.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"164 ","pages":"Article 104204"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524001325","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the growing demand for lightweight models and rapid defect detection in mini-light emitting diode (LED) chip manufacturing, we developed a highly efficient and lightweight multi-branch gradient backhaul (MBGB) block. Based on the MBGB block, a mini-LED surface defect detector was designed, which included an MBGB network (MBGB-net) for the backbone and an MBGB feature pyramid network (MBGB-FPN) for the feature fusion networks. MBGB-net was introduced to reduce resource utilisation and achieve efficient information flow while enhancing defect feature extraction from mini-LED wafers. MBGB-FPN optimises the parameter utilisation, thereby reducing the demand for computational resources while maintaining, or even improving, the detection accuracy. Furthermore, a partial convolution module is integrated into the detection head to reduce the computational overhead and improve the detection speed. The experimental results demonstrated that the method achieved optimal performance in terms of both accuracy and speed. On the mini-LED wafer defect dataset, it achieved an mAP50 of 87.2% with only 9.3M parameters and 21.6G FLOPs, reaching an impressive FPS of 345.4. Furthermore, on the NEU-DET dataset, an mAP50 of 77.5% was achieved using the same parameters and FLOPs.

Abstract Image

MBGB - 探测器:用于微型 LED 表面缺陷检测的多分支梯度回程轻量级模型
为了满足微型发光二极管(LED)芯片制造对轻量级模型和快速缺陷检测日益增长的需求,我们开发了一种高效、轻量级的多分支梯度回程(MBGB)模块。在 MBGB 块的基础上,我们设计了微型发光二极管表面缺陷检测器,其中包括用于骨干网的 MBGB 网络(MBGB-net)和用于特征融合网络的 MBGB 特征金字塔网络(MBGB-FPN)。引入 MBGB 网络是为了降低资源利用率,实现高效的信息流,同时加强微型 LED 晶圆的缺陷特征提取。MBGB-FPN 优化了参数利用率,从而降低了对计算资源的需求,同时保持甚至提高了检测精度。此外,检测头还集成了部分卷积模块,以减少计算开销,提高检测速度。实验结果表明,该方法在精度和速度方面都达到了最佳性能。在微型 LED 晶圆缺陷数据集上,该方法仅用 9.3M 参数和 21.6G FLOPs 就实现了 87.2% 的 mAP50,达到了令人印象深刻的 345.4 FPS。此外,在 NEU-DET 数据集上,使用相同的参数和 FLOPs,mAP50 达到了 77.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信