Qian-Peng Wang , Jing Yang , Yu-Feng Xu , Zi-Qiang Zhu , Ling-Nan Wu , Jiu-Jie Kuang , Du Wang , Marina Braun-Unkhoff , Zhen-Yu Tian
{"title":"Elucidating high-pressure chemistry in acetylene oxidation: Jet-stirred reactor experiments, pressure effects, and kinetic interpretation","authors":"Qian-Peng Wang , Jing Yang , Yu-Feng Xu , Zi-Qiang Zhu , Ling-Nan Wu , Jiu-Jie Kuang , Du Wang , Marina Braun-Unkhoff , Zhen-Yu Tian","doi":"10.1016/j.combustflame.2024.113835","DOIUrl":null,"url":null,"abstract":"<div><div>Acetylene plays a crucial role as an intermediate in the combustion of complex hydrocarbons, such as, e.g.<em>,</em> jet fuels. In this study, high-pressure acetylene oxidation has been investigated by a combination of kinetic and experimental methods using a jet-stirred reactor (JSR) in the range of 497–910 K at <em>p</em> = 24 atm. The study covered three fuel-equivalence ratios: <em>φ</em> = 0.5 (fuel-lean), <em>φ</em> = 1.0 (stoichiometric), and <em>φ</em> = 3.0 (fuel-rich). Mole fraction profiles of 10 species, including CO, CO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub>, CH<sub>3</sub>OH, CH<sub>3</sub>CHO, and C<sub>3</sub>H<sub>4</sub>O, were identified and quantified using gas chromatography (GC) and gas chromatography-mass spectrometry (GC–MS). A kinetic model for describing the high-pressure chemistry of acetylene oxidation is proposed, which well characterizes important experimental findings, such as the fuel oxidation reactivity and the speciation of crucial products. At high pressures (<em>p</em> = 24 atm), acetylene exhibits a higher fuel consumption than at lower pressures (<em>p</em> = 1 and 12 atm) because of the increased sensitivity of dehydrogenation reactions by OH radicals accelerating the oxidation of the fuel at low temperatures. Furthermore, fuel-specific intermediates are observed, including acetaldehyde, propanal, small alkanes, and alkenes. These species mainly result from H-abstraction reactions by OH following O<sub>2</sub>-addition reactions from triple carbon bond moieties in acetylene. The formation of further products, such as carbon monoxide and carbon dioxide, is closely related to the consumption of these fuel-specific species. In particular, the formation of aromatics, such as e.g., benzene and toluene, are detected at trace levels in the current experiments due to the rapid formation and decomposition process occurring at high pressures. By analyzing the distinct kinetic behavior, it was found that acetylene was almost completely depleted at higher system pressure (<em>p</em> = 24 atm). Some intermediates are rather active and can react with O<sub>2</sub> and peroxides. Consequently, the high-pressure oxidation of acetylene mainly proceeds along the pathway of C<img>C → CHCHOH → HOCHO/OCHCHO → CO → CO<sub>2</sub> at the high-pressure chemistry (<em>p</em> = 24 atm). Overall, this study provides valuable insights into the pressure-dependent combustion behavior of acetylene and its implications for optimizing jet fuel combustion processes.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"272 ","pages":"Article 113835"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024005443","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Acetylene plays a crucial role as an intermediate in the combustion of complex hydrocarbons, such as, e.g., jet fuels. In this study, high-pressure acetylene oxidation has been investigated by a combination of kinetic and experimental methods using a jet-stirred reactor (JSR) in the range of 497–910 K at p = 24 atm. The study covered three fuel-equivalence ratios: φ = 0.5 (fuel-lean), φ = 1.0 (stoichiometric), and φ = 3.0 (fuel-rich). Mole fraction profiles of 10 species, including CO, CO2, CH4, C2H4, C2H6, C3H6, C3H8, CH3OH, CH3CHO, and C3H4O, were identified and quantified using gas chromatography (GC) and gas chromatography-mass spectrometry (GC–MS). A kinetic model for describing the high-pressure chemistry of acetylene oxidation is proposed, which well characterizes important experimental findings, such as the fuel oxidation reactivity and the speciation of crucial products. At high pressures (p = 24 atm), acetylene exhibits a higher fuel consumption than at lower pressures (p = 1 and 12 atm) because of the increased sensitivity of dehydrogenation reactions by OH radicals accelerating the oxidation of the fuel at low temperatures. Furthermore, fuel-specific intermediates are observed, including acetaldehyde, propanal, small alkanes, and alkenes. These species mainly result from H-abstraction reactions by OH following O2-addition reactions from triple carbon bond moieties in acetylene. The formation of further products, such as carbon monoxide and carbon dioxide, is closely related to the consumption of these fuel-specific species. In particular, the formation of aromatics, such as e.g., benzene and toluene, are detected at trace levels in the current experiments due to the rapid formation and decomposition process occurring at high pressures. By analyzing the distinct kinetic behavior, it was found that acetylene was almost completely depleted at higher system pressure (p = 24 atm). Some intermediates are rather active and can react with O2 and peroxides. Consequently, the high-pressure oxidation of acetylene mainly proceeds along the pathway of CC → CHCHOH → HOCHO/OCHCHO → CO → CO2 at the high-pressure chemistry (p = 24 atm). Overall, this study provides valuable insights into the pressure-dependent combustion behavior of acetylene and its implications for optimizing jet fuel combustion processes.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.