Zhigang Ding , Jincheng Kan , Haoran Peng , Linke Huang , Huaiyu Hou , Feng Liu
{"title":"Thermo-kinetic origin for strength-ductility trade-off phenomena","authors":"Zhigang Ding , Jincheng Kan , Haoran Peng , Linke Huang , Huaiyu Hou , Feng Liu","doi":"10.1016/j.scriptamat.2024.116448","DOIUrl":null,"url":null,"abstract":"<div><div>Strength-ductility trade-off has been a long-standing dilemma in materials science, greatly limit the potential applications of various structural materials. Here, we explore the underlying physics of such paradox based on recently proposed generalized stability (GS) criterion. We propose that the strength-ductility trade-off relationship physically dominated by the correlation between thermodynamics driving force (Δ<em>G</em>) and the kinetic energy barrier (<em>Q</em>). Thus, we establish an intrinsic connection between GS criterion and mechanical properties, that high Δ<em>G</em> correspond to high strength, while small GS values associate with high plasticity. Additionally, we find that a new thermo-kinetic correlation ensuring sufficiently slow and steady dislocation slip in nano-twinned crystalline and gradient nanocrystalline, which break the original thermo-kinetic correlation for dislocation slip in nanocrystalline and achieve an excellent strength-ductility balance. This offers a quantitative method to optimize the strength and ductility of metal materials by thermo-kinetic properties.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"257 ","pages":"Article 116448"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004834","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Strength-ductility trade-off has been a long-standing dilemma in materials science, greatly limit the potential applications of various structural materials. Here, we explore the underlying physics of such paradox based on recently proposed generalized stability (GS) criterion. We propose that the strength-ductility trade-off relationship physically dominated by the correlation between thermodynamics driving force (ΔG) and the kinetic energy barrier (Q). Thus, we establish an intrinsic connection between GS criterion and mechanical properties, that high ΔG correspond to high strength, while small GS values associate with high plasticity. Additionally, we find that a new thermo-kinetic correlation ensuring sufficiently slow and steady dislocation slip in nano-twinned crystalline and gradient nanocrystalline, which break the original thermo-kinetic correlation for dislocation slip in nanocrystalline and achieve an excellent strength-ductility balance. This offers a quantitative method to optimize the strength and ductility of metal materials by thermo-kinetic properties.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.