Comparison of correlations for thermal creep of FBR MOX

IF 3.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Rolando Calabrese , Shun Hirooka
{"title":"Comparison of correlations for thermal creep of FBR MOX","authors":"Rolando Calabrese ,&nbsp;Shun Hirooka","doi":"10.1016/j.pnucene.2024.105516","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal creep is one of the key properties of mixed oxide (MOX) fuel for innovative fast reactors. Thermal creep of fuel affects markedly the interaction between the fuel and the cladding. A review of correlations available in the literature is presented. The effect of porosity, plutonium concentration, and stoichiometry are discussed also in the light of recent numerical results. Our analysis pointed out some inconsistencies concerning the modelling of the effect of porosity on diffusional creep and a re-evaluation of the effect of plutonium concentration. The discussion suggested that Evans's findings on the effect of stoichiometry should be better assessed as well as the level of increase in creep moving towards stoichiometry. Typical operating conditions of fast breeder reactors (FBRs) confirmed the need for an extension of porosity and temperature correlations' domains. Besides this, a new correlation based on a separate-effect approach has been proposed for fuel performance codes.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"178 ","pages":"Article 105516"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004669","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal creep is one of the key properties of mixed oxide (MOX) fuel for innovative fast reactors. Thermal creep of fuel affects markedly the interaction between the fuel and the cladding. A review of correlations available in the literature is presented. The effect of porosity, plutonium concentration, and stoichiometry are discussed also in the light of recent numerical results. Our analysis pointed out some inconsistencies concerning the modelling of the effect of porosity on diffusional creep and a re-evaluation of the effect of plutonium concentration. The discussion suggested that Evans's findings on the effect of stoichiometry should be better assessed as well as the level of increase in creep moving towards stoichiometry. Typical operating conditions of fast breeder reactors (FBRs) confirmed the need for an extension of porosity and temperature correlations' domains. Besides this, a new correlation based on a separate-effect approach has been proposed for fuel performance codes.
FBR MOX 热蠕变相关性比较
热蠕变是用于创新快堆的混合氧化物(MOX)燃料的关键特性之一。燃料的热蠕变会明显影响燃料与包壳之间的相互作用。本文对文献中的相关性进行了综述。还根据最新的数值结果讨论了孔隙率、钚浓度和化学计量的影响。我们的分析指出了在模拟孔隙率对扩散蠕变的影响和重新评估钚浓度的影响方面存在的一些不一致之处。讨论表明,应更好地评估埃文斯关于化学计量影响的研究结果,以及向化学计量发展时蠕变增加的程度。快中子增殖反应堆(FBRs)的典型运行条件证实了扩展孔隙率和温度相关性领域的必要性。此外,还为燃料性能代码提出了一种基于分离效应方法的新相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Nuclear Energy
Progress in Nuclear Energy 工程技术-核科学技术
CiteScore
5.30
自引率
14.80%
发文量
331
审稿时长
3.5 months
期刊介绍: Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field. Please note the following: 1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy. 2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc. 3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信