{"title":"Stability and robustness of time-discretization schemes for the Allen-Cahn equation via bifurcation and perturbation analysis","authors":"Wenrui Hao , Sun Lee , Xiaofeng Xu , Zhiliang Xu","doi":"10.1016/j.jcp.2024.113565","DOIUrl":null,"url":null,"abstract":"<div><div>The Allen-Cahn equation is a fundamental model for phase transitions, offering critical insights into the dynamics of interface evolution in various physical systems. This paper investigates the stability and robustness of frequently utilized time-discretization numerical schemes for solving the Allen-Cahn equation, with focuses on the Backward Euler, Crank-Nicolson (CN), convex splitting of modified CN, and Diagonally Implicit Runge-Kutta (DIRK) methods. Our stability analysis reveals that the Convex Splitting of the Modified CN scheme exhibits unconditional stability, allowing greater flexibility in time step size selection, while the other schemes are conditionally stable. Additionally, our robustness analysis highlights that the Backward Euler method converges to correct physical solutions regardless of initial conditions. In contrast, all other methods studied in this work show sensitivity to initial conditions and may converge to incorrect physical solutions if the initial conditions are not carefully chosen. This study introduces a comprehensive approach to assessing stability and robustness in numerical methods for solving the Allen-Cahn equation, providing a new perspective for evaluating numerical techniques for general nonlinear differential equations.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113565"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008131","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The Allen-Cahn equation is a fundamental model for phase transitions, offering critical insights into the dynamics of interface evolution in various physical systems. This paper investigates the stability and robustness of frequently utilized time-discretization numerical schemes for solving the Allen-Cahn equation, with focuses on the Backward Euler, Crank-Nicolson (CN), convex splitting of modified CN, and Diagonally Implicit Runge-Kutta (DIRK) methods. Our stability analysis reveals that the Convex Splitting of the Modified CN scheme exhibits unconditional stability, allowing greater flexibility in time step size selection, while the other schemes are conditionally stable. Additionally, our robustness analysis highlights that the Backward Euler method converges to correct physical solutions regardless of initial conditions. In contrast, all other methods studied in this work show sensitivity to initial conditions and may converge to incorrect physical solutions if the initial conditions are not carefully chosen. This study introduces a comprehensive approach to assessing stability and robustness in numerical methods for solving the Allen-Cahn equation, providing a new perspective for evaluating numerical techniques for general nonlinear differential equations.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.