Registration-based nonlinear model reduction of parametrized aerodynamics problems with applications to transonic Euler and RANS flows

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Alireza H. Razavi, Masayuki Yano
{"title":"Registration-based nonlinear model reduction of parametrized aerodynamics problems with applications to transonic Euler and RANS flows","authors":"Alireza H. Razavi,&nbsp;Masayuki Yano","doi":"10.1016/j.jcp.2024.113576","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a registration-based nonlinear model-order reduction (MOR) method for partial differential equations (PDEs) with applications to transonic Euler and Reynolds-averaged Navier–Stokes (RANS) equations in aerodynamics. These PDEs exhibit discontinuous features, namely shocks, whose location depends on problem configuration parameters, and the associated parametric solution manifold exhibits a slowly decaying Kolmogorov <em>N</em>-width. As a result, conventional linear MOR methods, which use linear reduced approximation spaces, do not yield accurate low-dimensional approximations. We present a registration-based nonlinear MOR method to overcome this challenge. Our formulation builds on the following key ingredients: (i) a geometrically transformable parametrized PDE discretization; (ii) localized spline-based parametrized transformations which warp the domain to align discontinuities; (iii) an efficient dilation-based shock sensor and metric to compute optimal transformation parameters; (iv) hyperreduction and online-efficient output-based error estimates; and (v) simultaneous transformation and adaptive finite element training. Compared to existing methods in the literature, our formulation is efficiently scalable to larger problems and is equipped with error estimates and hyperreduction. We demonstrate the effectiveness of the method on two-dimensional inviscid and turbulent flows modeled by the Euler and RANS equations, respectively.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113576"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008246","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a registration-based nonlinear model-order reduction (MOR) method for partial differential equations (PDEs) with applications to transonic Euler and Reynolds-averaged Navier–Stokes (RANS) equations in aerodynamics. These PDEs exhibit discontinuous features, namely shocks, whose location depends on problem configuration parameters, and the associated parametric solution manifold exhibits a slowly decaying Kolmogorov N-width. As a result, conventional linear MOR methods, which use linear reduced approximation spaces, do not yield accurate low-dimensional approximations. We present a registration-based nonlinear MOR method to overcome this challenge. Our formulation builds on the following key ingredients: (i) a geometrically transformable parametrized PDE discretization; (ii) localized spline-based parametrized transformations which warp the domain to align discontinuities; (iii) an efficient dilation-based shock sensor and metric to compute optimal transformation parameters; (iv) hyperreduction and online-efficient output-based error estimates; and (v) simultaneous transformation and adaptive finite element training. Compared to existing methods in the literature, our formulation is efficiently scalable to larger problems and is equipped with error estimates and hyperreduction. We demonstrate the effectiveness of the method on two-dimensional inviscid and turbulent flows modeled by the Euler and RANS equations, respectively.
基于注册的参数化空气动力学问题非线性模型缩减,应用于跨音速欧拉流和 RANS 流
我们针对偏微分方程(PDEs)开发了一种基于注册的非线性模型阶减(MOR)方法,并将其应用于空气动力学中的跨声速欧拉方程和雷诺平均纳维-斯托克斯方程(RANS)。这些偏微分方程具有不连续特征,即冲击,其位置取决于问题的配置参数,相关的参数解流形呈现缓慢衰减的 Kolmogorov N 宽。因此,使用线性缩小近似空间的传统线性 MOR 方法无法获得精确的低维近似。我们提出了一种基于配准的非线性 MOR 方法来克服这一难题。我们的方法基于以下关键要素:(i) 可进行几何变换的参数化 PDE 离散化;(ii) 基于参数化样条的局部变换,对域进行翘曲以对齐不连续性;(iii) 基于扩张的高效冲击传感器和度量,以计算最佳变换参数;(iv) 超还原和基于在线高效输出的误差估计;以及 (v) 同步变换和自适应有限元训练。与文献中的现有方法相比,我们的方法可有效地扩展到更大的问题,并配备了误差估计和超还原功能。我们分别在以欧拉方程和 RANS 方程为模型的二维不粘性流和湍流中演示了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信