A hybrid a posteriori MOOD limited lattice Boltzmann method to solve compressible fluid flows – LBMOOD

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ksenia Kozhanova , Song Zhao , Raphaël Loubère , Pierre Boivin
{"title":"A hybrid a posteriori MOOD limited lattice Boltzmann method to solve compressible fluid flows – LBMOOD","authors":"Ksenia Kozhanova ,&nbsp;Song Zhao ,&nbsp;Raphaël Loubère ,&nbsp;Pierre Boivin","doi":"10.1016/j.jcp.2024.113570","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we blend two lattice-Boltzmann (LB) numerical schemes with an <em>a posteriori</em> Multi-dimensional Optimal Order Detection (MOOD) paradigm to solve hyperbolic systems of conservation laws in 1D and 2D. The first LB scheme is robust to the presence of shock waves but lacks accuracy on smooth flows. The second one has a second-order of accuracy but develops non-physical oscillations when solving steep gradients. The MOOD paradigm produces a hybrid LB scheme via smooth and positivity detectors allowing to gather the best properties of the two LB methods within one scheme. Indeed, the resulting scheme presents second order of accuracy on smooth solutions, essentially non-oscillatory behaviour on irregular ones, and, an ‘almost fail-safe’ property concerning positivity issues. The numerical results on a set of sanity test cases and demanding ones are presented assessing the appropriate behaviour of the hybrid LBMOOD scheme in 1D and 2D.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113570"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008180","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we blend two lattice-Boltzmann (LB) numerical schemes with an a posteriori Multi-dimensional Optimal Order Detection (MOOD) paradigm to solve hyperbolic systems of conservation laws in 1D and 2D. The first LB scheme is robust to the presence of shock waves but lacks accuracy on smooth flows. The second one has a second-order of accuracy but develops non-physical oscillations when solving steep gradients. The MOOD paradigm produces a hybrid LB scheme via smooth and positivity detectors allowing to gather the best properties of the two LB methods within one scheme. Indeed, the resulting scheme presents second order of accuracy on smooth solutions, essentially non-oscillatory behaviour on irregular ones, and, an ‘almost fail-safe’ property concerning positivity issues. The numerical results on a set of sanity test cases and demanding ones are presented assessing the appropriate behaviour of the hybrid LBMOOD scheme in 1D and 2D.
解决可压缩流体流动的混合后验 MOOD 有限晶格玻尔兹曼法 - LBMOOD
在本文中,我们将两种格子-玻尔兹曼(LB)数值方案与后验多维最优阶次检测(MOOD)范式相结合,以求解一维和二维的双曲守恒定律系统。第一种 LB 方案对冲击波的存在具有鲁棒性,但对平滑流动缺乏精确性。第二种方案具有二阶精度,但在求解陡峭梯度时会产生非物理振荡。MOOD 范式通过平滑和正向检测器产生了一种混合 LB 方案,从而将两种 LB 方法的最佳特性集于一身。事实上,由此产生的方案在平滑解上具有二阶精度,在不规则解上基本无振荡行为,并且在正向性问题上具有 "几乎万无一失 "的特性。本文介绍了一组理智测试案例和高难度案例的数值结果,以评估混合 LBMOOD 方案在一维和二维中的适当行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信