Hanns Gietl , Chase N. Taylor , Yuji Hatano , Yasuhisa Oya , Masashi Shimada
{"title":"Comparative characterization of mixed spectra and thermal neutron shielded irradiated tungsten","authors":"Hanns Gietl , Chase N. Taylor , Yuji Hatano , Yasuhisa Oya , Masashi Shimada","doi":"10.1016/j.jnucmat.2024.155498","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of mixed spectra and thermal neutron shielded irradiation on tungsten was evaluated with plasma exposure in the tritium plasma experiment followed by thermal desorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The two different irradiation campaigns were performed at the High Flux Isotope Reactor to 0.39–0.74 displacement per atom (dpa) in the 894–1379 K temperature range. A neutron spectrum influence on the void size and void number density was not observed. However, a strong correlation was found between void size and void number density with temperature, but not with dpa in the limited dpa range of this study. Thermal neutron shielding significantly reduced the transmutation to Re+Os. Higher irradiation temperature will lead to larger voids with lower number density, which reduces deuterium retention. Grain growth was also observed for high-temperature irradiation of over ∼1300 K within the limited grains visible in the transmission electron microscopy specimens.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155498"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005993","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of mixed spectra and thermal neutron shielded irradiation on tungsten was evaluated with plasma exposure in the tritium plasma experiment followed by thermal desorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The two different irradiation campaigns were performed at the High Flux Isotope Reactor to 0.39–0.74 displacement per atom (dpa) in the 894–1379 K temperature range. A neutron spectrum influence on the void size and void number density was not observed. However, a strong correlation was found between void size and void number density with temperature, but not with dpa in the limited dpa range of this study. Thermal neutron shielding significantly reduced the transmutation to Re+Os. Higher irradiation temperature will lead to larger voids with lower number density, which reduces deuterium retention. Grain growth was also observed for high-temperature irradiation of over ∼1300 K within the limited grains visible in the transmission electron microscopy specimens.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.