Xiaoluoteng Song , Xiuwen Fu , Mingyuan Ren , Pasquale Pace , Gianluca Aloi , Giancarlo Fortino
{"title":"Prediction-based data collection of UAV-assisted Maritime Internet of Things","authors":"Xiaoluoteng Song , Xiuwen Fu , Mingyuan Ren , Pasquale Pace , Gianluca Aloi , Giancarlo Fortino","doi":"10.1016/j.vehcom.2024.100854","DOIUrl":null,"url":null,"abstract":"<div><div>In maritime data collection scenarios, due to the constraints of wireless communication and environmental factors such as wave motion, sea surface ducting effects, and sea surface curvature, floating sensor nodes are unable to establish direct data transmission links with the base station. The advent of unmanned aerial vehicle (UAV)-assisted Maritime Internet of Things (MIoT) provides a feasible solution to this challenge. However, in existing maritime environments, floating sensor nodes drift due to ocean currents, posing significant challenges for long-distance data transmission while maintaining a low age of information (AoI). Consequently, we introduce a prediction-based UAV-assisted data collection mechanism for MIoT. In this scheme, we first select convergence nodes responsible for gathering data from floating sensor nodes and forwarding it to passing UAVs. We then propose a dynamic clustering algorithm to allocate task areas to UAVs, with each area assigned to a single UAV for data collection from floating sensor nodes. To ensure stable data offloading by UAVs, we develop a UAV relay pairing algorithm to establish reliable air-to-air relay paths and provide two data offloading modes: distal UAV and proximate UAV. Owing to the drift of floating sensor nodes influenced by ocean currents, we employ a deep echo state network to predict the positions of floating sensor nodes and utilize a multi-agent deep deterministic policy gradient to solve the UAVs trajectory planning problem. Under this mechanism, the UAVs can adaptively adjust its flight path while exploring floating sensor nodes in dynamically changing ocean sensor node scenarios. Extensive experiments demonstrate that the proposed scheme can adapt to dynamic ocean environments, achieving low-AoI data collection from floating sensor nodes.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"50 ","pages":"Article 100854"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624001293","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In maritime data collection scenarios, due to the constraints of wireless communication and environmental factors such as wave motion, sea surface ducting effects, and sea surface curvature, floating sensor nodes are unable to establish direct data transmission links with the base station. The advent of unmanned aerial vehicle (UAV)-assisted Maritime Internet of Things (MIoT) provides a feasible solution to this challenge. However, in existing maritime environments, floating sensor nodes drift due to ocean currents, posing significant challenges for long-distance data transmission while maintaining a low age of information (AoI). Consequently, we introduce a prediction-based UAV-assisted data collection mechanism for MIoT. In this scheme, we first select convergence nodes responsible for gathering data from floating sensor nodes and forwarding it to passing UAVs. We then propose a dynamic clustering algorithm to allocate task areas to UAVs, with each area assigned to a single UAV for data collection from floating sensor nodes. To ensure stable data offloading by UAVs, we develop a UAV relay pairing algorithm to establish reliable air-to-air relay paths and provide two data offloading modes: distal UAV and proximate UAV. Owing to the drift of floating sensor nodes influenced by ocean currents, we employ a deep echo state network to predict the positions of floating sensor nodes and utilize a multi-agent deep deterministic policy gradient to solve the UAVs trajectory planning problem. Under this mechanism, the UAVs can adaptively adjust its flight path while exploring floating sensor nodes in dynamically changing ocean sensor node scenarios. Extensive experiments demonstrate that the proposed scheme can adapt to dynamic ocean environments, achieving low-AoI data collection from floating sensor nodes.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.