{"title":"Oxidation behavior of β-Nb formed in Zr-1Nb under neutron irradiation in PWR conditions","authors":"Xue Han, Huacai Wang, Huanlin Cheng, Jinze Sun, Lina Guo, Wulin Song, Huize Fan","doi":"10.1016/j.jnucmat.2024.155478","DOIUrl":null,"url":null,"abstract":"<div><div>This work focuses on neutron irradiated Zr-1Nb alloy, using High Resolution Transmission Electron Microscopy (HRTEM) to investigate the oxidation behavior of β-Nb at different distances from the Oxide /Metal (O/M) interface within the oxide film. Results show that β-Nb was initially oxidized to T-NbO<sub>2</sub> at 0 nm at O/M interface, then into a complex morphology of T-NbO<sub>2</sub>, M-Nb<sub>2</sub>O<sub>5</sub>, and O-Nb<sub>2</sub>O<sub>5</sub> within 600 nm. Finally, it was completely oxidized to M-Nb<sub>2</sub>O<sub>5</sub> within 800 nm. β-Nb in this study did not exhibit amorphous morphology within observed distances. In addition, Inverse Fast Fourier Transformation (IFFT) and Weak Beam Dark Field (WBDF) techniques are employed to characterize the dislocation density and distribution in the oxide film, results indicate that the distribution of dislocations generated by neutron irradiation in the oxide film is relatively uniform and neutron irradiation is not the primary reason affecting the oxidation behavior of β-Nb.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155478"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005798","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work focuses on neutron irradiated Zr-1Nb alloy, using High Resolution Transmission Electron Microscopy (HRTEM) to investigate the oxidation behavior of β-Nb at different distances from the Oxide /Metal (O/M) interface within the oxide film. Results show that β-Nb was initially oxidized to T-NbO2 at 0 nm at O/M interface, then into a complex morphology of T-NbO2, M-Nb2O5, and O-Nb2O5 within 600 nm. Finally, it was completely oxidized to M-Nb2O5 within 800 nm. β-Nb in this study did not exhibit amorphous morphology within observed distances. In addition, Inverse Fast Fourier Transformation (IFFT) and Weak Beam Dark Field (WBDF) techniques are employed to characterize the dislocation density and distribution in the oxide film, results indicate that the distribution of dislocations generated by neutron irradiation in the oxide film is relatively uniform and neutron irradiation is not the primary reason affecting the oxidation behavior of β-Nb.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.