Jiru Zhong , Mingtao Yang , Xinfu He , Kaishu Guan , Bintao Yu , Zhuangzhuang He
{"title":"Improved approaches for small punch test to estimate the yield and ultimate tensile strength of metallic materials","authors":"Jiru Zhong , Mingtao Yang , Xinfu He , Kaishu Guan , Bintao Yu , Zhuangzhuang He","doi":"10.1016/j.jnucmat.2024.155490","DOIUrl":null,"url":null,"abstract":"<div><div>The small punch test (SPT) has been used extensively in nuclear industries to estimate mechanical properties changes of metals due to irradiation. This paper aims to propose more accurate approaches for SPT to estimate the yield and ultimate tensile strength of metals. The relationship between the SPT force and the yield and ultimate tensile strength of materials was studied by using finite element simulation data, and then three approaches were developed to determine tensile properties of materials by means of SPT. Force method and Slop method were developed to derive the ultimate tensile strength of metals from SPT curves, and Area method was proposed to determine the yield and ultimate tensile strength of metals. The accuracy of these approaches were verified by two candidate structural material for fusion reactors (CLF-1 steel and 9Cr-ODS steel) and other 10 structural materials. Area method gives more accurate evaluation on the yield strength of metals than the correlation method given in European standard on SPT. In addition, the developed approaches have advantages in estimating the tensile properties of low ductility metals.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"604 ","pages":"Article 155490"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005919","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The small punch test (SPT) has been used extensively in nuclear industries to estimate mechanical properties changes of metals due to irradiation. This paper aims to propose more accurate approaches for SPT to estimate the yield and ultimate tensile strength of metals. The relationship between the SPT force and the yield and ultimate tensile strength of materials was studied by using finite element simulation data, and then three approaches were developed to determine tensile properties of materials by means of SPT. Force method and Slop method were developed to derive the ultimate tensile strength of metals from SPT curves, and Area method was proposed to determine the yield and ultimate tensile strength of metals. The accuracy of these approaches were verified by two candidate structural material for fusion reactors (CLF-1 steel and 9Cr-ODS steel) and other 10 structural materials. Area method gives more accurate evaluation on the yield strength of metals than the correlation method given in European standard on SPT. In addition, the developed approaches have advantages in estimating the tensile properties of low ductility metals.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.