CSSANet: A channel shuffle slice-aware network for pulmonary nodule detection

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Muwei Jian , Huihui Huang , Haoran Zhang , Rui Wang , Xiaoguang Li , Hui Yu
{"title":"CSSANet: A channel shuffle slice-aware network for pulmonary nodule detection","authors":"Muwei Jian ,&nbsp;Huihui Huang ,&nbsp;Haoran Zhang ,&nbsp;Rui Wang ,&nbsp;Xiaoguang Li ,&nbsp;Hui Yu","doi":"10.1016/j.neucom.2024.128827","DOIUrl":null,"url":null,"abstract":"<div><div>Lung cancer stands as the leading cause of cancer related mortality worldwide. Precise and automated identification of lung nodules through 3D Computed Tomography (CT) scans is an essential part of screening for lung cancer effectively. Due to the small size of pulmonary nodules and the close correlation between neighboring slices of 3D CT images, most of the existing methods only consider the characteristics of a single slice, thus easily lead to insufficient detection accuracy of pulmonary nodules. To solve this problem, this paper proposes a Channel Shuffle Slice-Aware Network (CSSANet), which aims to fully exploit the spatial correlation between slices and effectively utilize the intra-slice features and inter-slice contextual information to achieve accurate detection of lung nodules. Specifically, we design a Group Shuffle Attention module (GSA module) to fuse the inter-slice feature in order to enhance the discrimination and extraction of corresponding shape information of distinct nodules in the same group of slices. Experiments and ablation study on a publicly available LUNA16 dataset demonstrate that the proposed method can enhance the detection sensitivity effectively. The Competition Performance Metric (CPM) score of 89.8 % is superior over other representative detection models.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128827"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015984","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer stands as the leading cause of cancer related mortality worldwide. Precise and automated identification of lung nodules through 3D Computed Tomography (CT) scans is an essential part of screening for lung cancer effectively. Due to the small size of pulmonary nodules and the close correlation between neighboring slices of 3D CT images, most of the existing methods only consider the characteristics of a single slice, thus easily lead to insufficient detection accuracy of pulmonary nodules. To solve this problem, this paper proposes a Channel Shuffle Slice-Aware Network (CSSANet), which aims to fully exploit the spatial correlation between slices and effectively utilize the intra-slice features and inter-slice contextual information to achieve accurate detection of lung nodules. Specifically, we design a Group Shuffle Attention module (GSA module) to fuse the inter-slice feature in order to enhance the discrimination and extraction of corresponding shape information of distinct nodules in the same group of slices. Experiments and ablation study on a publicly available LUNA16 dataset demonstrate that the proposed method can enhance the detection sensitivity effectively. The Competition Performance Metric (CPM) score of 89.8 % is superior over other representative detection models.
CSSANet:用于肺结节检测的通道洗牌切片感知网络
肺癌是全球癌症相关死亡的主要原因。通过三维计算机断层扫描(CT)精确自动识别肺结节是有效筛查肺癌的重要组成部分。由于肺结节的尺寸较小,且三维 CT 图像相邻切片之间的相关性很强,现有的方法大多只考虑单个切片的特征,因此容易导致肺结节的检测精度不够。为解决这一问题,本文提出了通道洗牌切片感知网络(Channel Shuffle Slice-Aware Network,CSSANet),旨在充分利用切片间的空间相关性,有效利用切片内特征和切片间上下文信息,实现肺结节的精确检测。具体来说,我们设计了一个组洗牌注意模块(GSA 模块)来融合切片间特征,以增强对同组切片中不同结节的相应形状信息的辨别和提取。在公开的 LUNA16 数据集上进行的实验和消融研究表明,所提出的方法能有效提高检测灵敏度。与其他具有代表性的检测模型相比,该方法的竞争性能指标(CPM)得分高达 89.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信