Xueru Zhang , Dennis K.J. Lin , Min-Qian Liu , Jianbin Chen
{"title":"Analysis of order-of-addition experiments","authors":"Xueru Zhang , Dennis K.J. Lin , Min-Qian Liu , Jianbin Chen","doi":"10.1016/j.csda.2024.108077","DOIUrl":null,"url":null,"abstract":"<div><div>The order-of-addition (OofA) experiment involves arranging components in a specific order to optimize a certain objective, which is attracting a great deal of attention in many disciplines, especially in the areas of biochemistry, scheduling, and engineering. Recent studies have highlighted its significance, and notable works have aimed to address NP-hard OofA problems from a statistical perspective. However, solving OofA problems presents challenges due to their complex nature and the presence of uncertainty, such as scheduling problems with uncertain processing times. These uncertainties affect processing times, which are not known with certainty in advance. They introduce heteroscedasticity into OofA experiments, where different orders result in varying dispersions. To address these challenges, a unified framework is proposed to analyze scheduling problems without making specific assumptions about the distribution of these certainties. It encompasses model development and optimization, encapsulating existing homoscedastic studies (where different orders produce the same dispersion value) as a specific instance. For heteroscedastic cases, a dual response optimization within an uncertainty set is proposed, aiming to minimize the dispersion of response while keeping the location of response with a predefined target value. However, solving the proposed non-linear minimax optimization is rather challenging. An equivalent optimization formulation with low computational cost is proposed for solving such a challenging problem. Theoretical supports are established to ensure the tractability of the proposed method. Simulation studies are conducted to demonstrate the effectiveness of the proposed approach. With its solid theoretical support, ease of implementation, and ability to find an optimal order, the proposed approach offers a practical and competitive solution to solving general order-of-addition problems.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"203 ","pages":"Article 108077"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001610","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The order-of-addition (OofA) experiment involves arranging components in a specific order to optimize a certain objective, which is attracting a great deal of attention in many disciplines, especially in the areas of biochemistry, scheduling, and engineering. Recent studies have highlighted its significance, and notable works have aimed to address NP-hard OofA problems from a statistical perspective. However, solving OofA problems presents challenges due to their complex nature and the presence of uncertainty, such as scheduling problems with uncertain processing times. These uncertainties affect processing times, which are not known with certainty in advance. They introduce heteroscedasticity into OofA experiments, where different orders result in varying dispersions. To address these challenges, a unified framework is proposed to analyze scheduling problems without making specific assumptions about the distribution of these certainties. It encompasses model development and optimization, encapsulating existing homoscedastic studies (where different orders produce the same dispersion value) as a specific instance. For heteroscedastic cases, a dual response optimization within an uncertainty set is proposed, aiming to minimize the dispersion of response while keeping the location of response with a predefined target value. However, solving the proposed non-linear minimax optimization is rather challenging. An equivalent optimization formulation with low computational cost is proposed for solving such a challenging problem. Theoretical supports are established to ensure the tractability of the proposed method. Simulation studies are conducted to demonstrate the effectiveness of the proposed approach. With its solid theoretical support, ease of implementation, and ability to find an optimal order, the proposed approach offers a practical and competitive solution to solving general order-of-addition problems.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]