{"title":"The influence of FeTi oxide microlites on bubble nucleation in rhyolitic melts","authors":"Wade L. Aubin , James E. Gardner","doi":"10.1016/j.jvolgeores.2024.108218","DOIUrl":null,"url":null,"abstract":"<div><div>We conducted a set of high-temperature decompression experiments to constrain the mechanisms of heterogeneous bubble nucleation in high-silica rhyolitic melt that contained 4.6–4.8 wt% H<sub>2</sub>O. The melt was seeded with two different size fractions of magnetite crystals: 1–2 μm crystals and large crystals of 32–135 μm (long axis). The number density of bubbles (BND) that nucleated on the small crystals was found to increase from 10<sup>6.5</sup> to 10<sup>8.7</sup> cm<sup>−3</sup> as H<sub>2</sub>O increasingly supersaturated (ΔP) in the melt from 3 to 23 MPa. At ΔP >23 MPs, however, the number of bubbles nucleated equals the number of small magnetite and no more nucleated with increased ΔP. At the same conditions, the number of bubbles that nucleated on the large crystals increases, from <1 bubble per crystal at ΔP = 3 MPa to 14 ± 4 bubbles per crystal at 58 MPa. We thus find that ΔP has a significant influence on the mechanisms of heterogenous nucleation, but the observed increases in BND are much greater than would be predicted solely from the increase in ΔP. The discrepancy can be reconciled if there are different sites on the crystals that become activated at greater ΔP, leading to greater numbers of bubbles nucleating. The cumulative BND nucleated on small crystals, however, is capped by the number of crystals present. The BND values generated at ΔP >23 MPa in our experiments overlap with those found in ∼80 % of naturally occurring pumice. Assuming our experiments are representative of natural pumice, this suggests that explosively erupted magmas either become significantly volatile supersaturated before heterogeneously nucleating bubbles, or that the number of nucleation sites in natural magmas greatly exceed 10<sup>9</sup> cm<sup>−3</sup>.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"456 ","pages":"Article 108218"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324002117","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We conducted a set of high-temperature decompression experiments to constrain the mechanisms of heterogeneous bubble nucleation in high-silica rhyolitic melt that contained 4.6–4.8 wt% H2O. The melt was seeded with two different size fractions of magnetite crystals: 1–2 μm crystals and large crystals of 32–135 μm (long axis). The number density of bubbles (BND) that nucleated on the small crystals was found to increase from 106.5 to 108.7 cm−3 as H2O increasingly supersaturated (ΔP) in the melt from 3 to 23 MPa. At ΔP >23 MPs, however, the number of bubbles nucleated equals the number of small magnetite and no more nucleated with increased ΔP. At the same conditions, the number of bubbles that nucleated on the large crystals increases, from <1 bubble per crystal at ΔP = 3 MPa to 14 ± 4 bubbles per crystal at 58 MPa. We thus find that ΔP has a significant influence on the mechanisms of heterogenous nucleation, but the observed increases in BND are much greater than would be predicted solely from the increase in ΔP. The discrepancy can be reconciled if there are different sites on the crystals that become activated at greater ΔP, leading to greater numbers of bubbles nucleating. The cumulative BND nucleated on small crystals, however, is capped by the number of crystals present. The BND values generated at ΔP >23 MPa in our experiments overlap with those found in ∼80 % of naturally occurring pumice. Assuming our experiments are representative of natural pumice, this suggests that explosively erupted magmas either become significantly volatile supersaturated before heterogeneously nucleating bubbles, or that the number of nucleation sites in natural magmas greatly exceed 109 cm−3.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.