{"title":"Embeddings and near-neighbor searching with constant additive error for hyperbolic spaces","authors":"Eunku Park, Antoine Vigneron","doi":"10.1016/j.comgeo.2024.102150","DOIUrl":null,"url":null,"abstract":"<div><div>We give an embedding of the Poincaré halfspace <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> into a discrete metric space based on a binary tiling of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span>, with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>. It yields the following results. We show that any subset <em>P</em> of <em>n</em> points in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow></msup></math></span> can be embedded into a graph-metric with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> vertices and edges, and with additive distortion <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>. We also show how to construct, for any <em>k</em>, an <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>-purely additive spanner of <em>P</em> with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span> Steiner vertices and <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mo>⋅</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges, where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>k</em>th-row inverse Ackermann function. Finally, we show how to construct an approximate Voronoi diagram for <em>P</em> of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi></math></span>. It allows us to answer approximate near-neighbor queries in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mo>+</mo><mi>O</mi><mo>(</mo><mi>D</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time, with additive error <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span>. These constructions can be done in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></msup><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi></math></span> time.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"126 ","pages":"Article 102150"},"PeriodicalIF":0.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000725","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give an embedding of the Poincaré halfspace into a discrete metric space based on a binary tiling of , with additive distortion . It yields the following results. We show that any subset P of n points in can be embedded into a graph-metric with vertices and edges, and with additive distortion . We also show how to construct, for any k, an -purely additive spanner of P with Steiner vertices and edges, where is the kth-row inverse Ackermann function. Finally, we show how to construct an approximate Voronoi diagram for P of size . It allows us to answer approximate near-neighbor queries in time, with additive error . These constructions can be done in time.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.