Using UAV hyperspectral imagery and deep learning for Object-Based quantitative inversion of Zanthoxylum rust disease index

IF 7.6 Q1 REMOTE SENSING
Kai Zhang , Jie Deng , Congying Zhou , Jiangui Liu , Xuan Lv , Ying Wang , Enhong Sun , Yan Liu , Zhanhong Ma , Jiali Shang
{"title":"Using UAV hyperspectral imagery and deep learning for Object-Based quantitative inversion of Zanthoxylum rust disease index","authors":"Kai Zhang ,&nbsp;Jie Deng ,&nbsp;Congying Zhou ,&nbsp;Jiangui Liu ,&nbsp;Xuan Lv ,&nbsp;Ying Wang ,&nbsp;Enhong Sun ,&nbsp;Yan Liu ,&nbsp;Zhanhong Ma ,&nbsp;Jiali Shang","doi":"10.1016/j.jag.2024.104262","DOIUrl":null,"url":null,"abstract":"<div><div><em>Zanthoxylum</em> rust (ZR) poses a significant threat to <em>Zanthoxylum bungeanum</em> Maxim.(ZBM) production, impacting both the yield and quality. The lack of current research on ZR using unmanned aerial vehicle (UAV) remote sensing poses a challenge to achieving precise management of individual ZBM plant. This study acquired six UAV hyperspectral images to create a ZR inversion dataset . This dataset, to our knowledge, is the first dataset for remote sensing deep learning (DL) of ZR using UAV. To facilitate automated extraction of individual ZBM plant and the quantitative inversion of ZR disease index (DI), we introduced the object-based quantitative inversion framework (OQIF). OQIF achieved high accuracy in recognizing ZBM (average precision at an intersection over union threshold of 0.5 was 90.0 %). Remarkably, OQIF demonstrates outstanding quantitative inversion results for ZR DI (R<sup>2</sup> = 0.90, RMSE = 3.97, n = 8166). For DI &lt; 10, the RMSE was 2.48, showcasing early detection capability. Our research has significant implications for ZBM cultivation and precision management, pioneering object-based quantitative inversion for tree diseases and yield estimation, with potential for early ZR detection.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"135 ","pages":"Article 104262"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224006186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Zanthoxylum rust (ZR) poses a significant threat to Zanthoxylum bungeanum Maxim.(ZBM) production, impacting both the yield and quality. The lack of current research on ZR using unmanned aerial vehicle (UAV) remote sensing poses a challenge to achieving precise management of individual ZBM plant. This study acquired six UAV hyperspectral images to create a ZR inversion dataset . This dataset, to our knowledge, is the first dataset for remote sensing deep learning (DL) of ZR using UAV. To facilitate automated extraction of individual ZBM plant and the quantitative inversion of ZR disease index (DI), we introduced the object-based quantitative inversion framework (OQIF). OQIF achieved high accuracy in recognizing ZBM (average precision at an intersection over union threshold of 0.5 was 90.0 %). Remarkably, OQIF demonstrates outstanding quantitative inversion results for ZR DI (R2 = 0.90, RMSE = 3.97, n = 8166). For DI < 10, the RMSE was 2.48, showcasing early detection capability. Our research has significant implications for ZBM cultivation and precision management, pioneering object-based quantitative inversion for tree diseases and yield estimation, with potential for early ZR detection.
利用无人机高光谱成像和深度学习,实现基于对象的黄腐病锈病指数定量反演
Zanthoxylum rust(ZR)对Zanthoxylum bungeanum Maxim.(ZBM)的产量和质量都构成了严重威胁。目前缺乏利用无人飞行器(UAV)遥感技术对 ZR 进行研究,这对实现对单株 ZBM 植物的精确管理构成了挑战。这项研究获取了六幅无人机高光谱图像,以创建 ZR 反演数据集。据我们所知,该数据集是首个利用无人机进行 ZR 遥感深度学习(DL)的数据集。为了便于自动提取单株 ZBM 植物和定量反演 ZR 疾病指数(DI),我们引入了基于对象的定量反演框架(OQIF)。OQIF 在识别 ZBM 方面达到了很高的精确度(交叉点超过结合阈值 0.5 时的平均精确度为 90.0%)。值得注意的是,OQIF 对 ZR DI 的定量反演结果非常出色(R2 = 0.90,RMSE = 3.97,n = 8166)。对于 DI < 10,RMSE 为 2.48,显示了早期检测能力。我们的研究对 ZBM 栽培和精确管理具有重要意义,开创了基于对象的树木病害和产量估算定量反演,具有早期 ZR 检测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信