Shihui Zhang , Kun Chen , Gangzheng Zhai , He Li , Shaojie Han
{"title":"CMPNet: A cross-modal multi-scale perception network for RGB-T crowd counting","authors":"Shihui Zhang , Kun Chen , Gangzheng Zhai , He Li , Shaojie Han","doi":"10.1016/j.future.2024.107596","DOIUrl":null,"url":null,"abstract":"<div><div>The cross-modal crowd counting method demonstrates better scene adaptability under complex conditions by introducing independent supplementary information. However, existing methods still face problems such as insufficient fusion of modal features, underutilization of crowd structure, and the neglect of scale information. In response to the above issues, this paper proposes a cross-modal multi-scale perception network (CMPNet). Specifically, CMPNet mainly consists of a cross-modal perception fusion module and a multi-scale feature aggregation module. The cross-modal perception fusion module effectively suppresses noise features while sharing features between different modalities, thereby significantly improving the robustness of the crowd counting process. The multi-scale feature aggregation module obtains rich crowd structure information through a spatial context aware graph convolution unit, and then integrates feature information from different scales to enhance the network’s perception ability of crowd density. To the best of our knowledge, CMPNet is the first attempt to model the crowd structure and mine its semantics in the field of cross-modal crowd counting. The experimental results show that CMPNet achieves state-of-the-art performance on all RGB-T datasets, providing an effective solution for cross-modal crowd counting. We will release the code at <span><span>https://github.com/KunChenKKK/CMPNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"164 ","pages":"Article 107596"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005600","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The cross-modal crowd counting method demonstrates better scene adaptability under complex conditions by introducing independent supplementary information. However, existing methods still face problems such as insufficient fusion of modal features, underutilization of crowd structure, and the neglect of scale information. In response to the above issues, this paper proposes a cross-modal multi-scale perception network (CMPNet). Specifically, CMPNet mainly consists of a cross-modal perception fusion module and a multi-scale feature aggregation module. The cross-modal perception fusion module effectively suppresses noise features while sharing features between different modalities, thereby significantly improving the robustness of the crowd counting process. The multi-scale feature aggregation module obtains rich crowd structure information through a spatial context aware graph convolution unit, and then integrates feature information from different scales to enhance the network’s perception ability of crowd density. To the best of our knowledge, CMPNet is the first attempt to model the crowd structure and mine its semantics in the field of cross-modal crowd counting. The experimental results show that CMPNet achieves state-of-the-art performance on all RGB-T datasets, providing an effective solution for cross-modal crowd counting. We will release the code at https://github.com/KunChenKKK/CMPNet.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.