Mahrad Hanaforoosh, Mohammad Abdollahi Azgomi, Mehrdad Ashtiani
{"title":"Reducing the cost of cold start time in serverless function executions using granularity trees","authors":"Mahrad Hanaforoosh, Mohammad Abdollahi Azgomi, Mehrdad Ashtiani","doi":"10.1016/j.future.2024.107604","DOIUrl":null,"url":null,"abstract":"<div><div>In serverless computing, cold starts significantly impede performance. This paper presents a granularity tree-based scheduling strategy, dynamically adjusting serverless function deployment by package dependencies to mitigate cold starts and optimize resource usage. This approach notably reduces cold start and response times. Empirical results from evaluating functions across various datasets show the strategy outperforms existing methods. Specifically, it consistently delivers lower response times and decreases resource consumption, demonstrating its effectiveness in managing computational resources while ensuring swift function invocation. In particular scenarios, the proposed scheduler impressively reduced response times from 8134.1 ms to 392.8 ms and idle memory usage from 15.2 GB to 11.2 GB per machine. In other scenarios, it reduced response times from 12,152.7 ms to 504.2 ms while maintaining a 100% function execution percentage. These quantified improvements underscore the significant enhancements in cold start mitigation and overall system performance, highlighting the potential of granularity tree-based scheduling in enhancing serverless computing architectures by effectively balancing rapid response with reduced resource usage.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"164 ","pages":"Article 107604"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005685","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In serverless computing, cold starts significantly impede performance. This paper presents a granularity tree-based scheduling strategy, dynamically adjusting serverless function deployment by package dependencies to mitigate cold starts and optimize resource usage. This approach notably reduces cold start and response times. Empirical results from evaluating functions across various datasets show the strategy outperforms existing methods. Specifically, it consistently delivers lower response times and decreases resource consumption, demonstrating its effectiveness in managing computational resources while ensuring swift function invocation. In particular scenarios, the proposed scheduler impressively reduced response times from 8134.1 ms to 392.8 ms and idle memory usage from 15.2 GB to 11.2 GB per machine. In other scenarios, it reduced response times from 12,152.7 ms to 504.2 ms while maintaining a 100% function execution percentage. These quantified improvements underscore the significant enhancements in cold start mitigation and overall system performance, highlighting the potential of granularity tree-based scheduling in enhancing serverless computing architectures by effectively balancing rapid response with reduced resource usage.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.