Analytical properties and related inequalities derived from multiplicative Hadamard k-fractional integrals

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ziyi Zhou , Tingsong Du
{"title":"Analytical properties and related inequalities derived from multiplicative Hadamard k-fractional integrals","authors":"Ziyi Zhou ,&nbsp;Tingsong Du","doi":"10.1016/j.chaos.2024.115715","DOIUrl":null,"url":null,"abstract":"<div><div>The present article is intended to address the properties and associated inequalities of multiplicative Hadamard <span><math><mi>k</mi></math></span>-fractional integrals. The core concept lies in introducing the multiplicative Hadamard <span><math><mi>k</mi></math></span>-fractional integrals. In this framework, various analytical characteristics they possess, such as <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>integrability, continuity, commutativity, semigroup property, boundedness, and others, are examined herein. Subsequently, the Hermite–Hadamard-analogous inequalities are formulated for the novelly constructed operators. Meanwhile, an identity is inferred within multiplicative Hadamard <span><math><mi>k</mi></math></span>-fractional integrals, based on which a series of Bullen-type inequalities are derived in this article, where the function <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is GG-convex and the function <span><math><msup><mrow><mrow><mo>(</mo><mo>ln</mo><msup><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> is GA-convex for <span><math><mrow><mi>s</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, with a particular focus on discussing the case when <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. To facilitate a more profound understanding of the outcomes, we offer illustrative examples together with numerical simulations to confirm the consistency of the theoretical results. Finally, applications of the proposed results in multiplicative differential equations, quadrature formulas, and special means for real numbers are investigated as well.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115715"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012670","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The present article is intended to address the properties and associated inequalities of multiplicative Hadamard k-fractional integrals. The core concept lies in introducing the multiplicative Hadamard k-fractional integrals. In this framework, various analytical characteristics they possess, such as integrability, continuity, commutativity, semigroup property, boundedness, and others, are examined herein. Subsequently, the Hermite–Hadamard-analogous inequalities are formulated for the novelly constructed operators. Meanwhile, an identity is inferred within multiplicative Hadamard k-fractional integrals, based on which a series of Bullen-type inequalities are derived in this article, where the function Λ is GG-convex and the function (lnΛ)s is GA-convex for s>1, with a particular focus on discussing the case when 0<s1. To facilitate a more profound understanding of the outcomes, we offer illustrative examples together with numerical simulations to confirm the consistency of the theoretical results. Finally, applications of the proposed results in multiplicative differential equations, quadrature formulas, and special means for real numbers are investigated as well.
由乘法哈达玛 k 分积分导出的分析性质和相关不等式
本文旨在探讨乘法哈达玛 k 分积分的性质和相关不等式。其核心概念在于引入乘法哈达玛 k 分数积分。在此框架下,研究了它们所具有的各种分析特性,如∗可整性、连续性、交换性、半群性质、有界性等。随后,对新构造的算子提出了赫米特-哈达玛(Hermite-Hadamard)类似不等式。同时,在乘法哈达玛 k 分数积分中推导出一个同一性,在此基础上,本文推导出一系列布伦型不等式,其中函数Λ∗是 GG-凸的,函数(lnΛ∗)s 在 s>1 时是 GA-凸的,特别着重讨论了 0<s≤1 时的情况。为了便于更深刻地理解这些结果,我们提供了示例,并通过数值模拟来证实理论结果的一致性。最后,我们还研究了所提结果在乘法微分方程、正交公式和实数特殊手段中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信