Analysis of a stochastic SEIS epidemic model motivated by Black–Karasinski process: Probability density function

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Baoquan Zhou, Ningzhong Shi
{"title":"Analysis of a stochastic SEIS epidemic model motivated by Black–Karasinski process: Probability density function","authors":"Baoquan Zhou,&nbsp;Ningzhong Shi","doi":"10.1016/j.chaos.2024.115713","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines a stochastic SEIS epidemic model motivated by Black–Karasinski process. First, it is shown that Black–Karasinski process is a both biologically and mathematically reasonable assumption compared with existing stochastic modeling methods. By analyzing the diffusion structure of the model and solving the relevant Kolmogorov–Fokker–Planck equation, a complete characterization for explicitly approximating the stationary density function near some quasi-positive equilibria is provided. Then for the deterministic model, the basic reproduction number and related asymptotic stability are studied. Finally, several numerical examples are given to substantiate our theoretical findings.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115713"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012657","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines a stochastic SEIS epidemic model motivated by Black–Karasinski process. First, it is shown that Black–Karasinski process is a both biologically and mathematically reasonable assumption compared with existing stochastic modeling methods. By analyzing the diffusion structure of the model and solving the relevant Kolmogorov–Fokker–Planck equation, a complete characterization for explicitly approximating the stationary density function near some quasi-positive equilibria is provided. Then for the deterministic model, the basic reproduction number and related asymptotic stability are studied. Finally, several numerical examples are given to substantiate our theoretical findings.
以 Black-Karasinski 过程为动机的 SEIS 随机流行病模型分析:概率密度函数
本文研究了以 Black-Karasinski 过程为动机的 SEIS 流行病随机模型。首先,与现有的随机建模方法相比,Black-Karasinski 过程在生物学和数学上都是一个合理的假设。通过分析模型的扩散结构和求解相关的 Kolmogorov-Fokker-Planck 方程,为显式逼近某些准正平衡点附近的静态密度函数提供了完整的描述。然后研究了确定性模型的基本繁殖数和相关渐近稳定性。最后,给出了几个数值例子来证实我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信