Inference in predictive quantile regressions

IF 9.9 3区 经济学 Q1 ECONOMICS
Alex Maynard , Katsumi Shimotsu , Nina Kuriyama
{"title":"Inference in predictive quantile regressions","authors":"Alex Maynard ,&nbsp;Katsumi Shimotsu ,&nbsp;Nina Kuriyama","doi":"10.1016/j.jeconom.2024.105875","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies inference in predictive quantile regressions when the predictive regressor has a near-unit root. We derive asymptotic distributions for the quantile regression estimator and its heteroskedasticity and autocorrelation consistent (HAC) <span><math><mi>t</mi></math></span>-statistic in terms of functionals of Ornstein–Uhlenbeck processes. We then propose a switching-fully modified (FM) predictive test for quantile predictability. The proposed test employs an FM style correction with a Bonferroni bound for the local-to-unity parameter when the predictor has a near unit root. It switches to a standard predictive quantile regression test with a slightly conservative critical value when the largest root of the predictor lies in the stationary range. Simulations indicate that the test has a reliable size in small samples and good power. We employ this new methodology to test the ability of three commonly employed, highly persistent and endogenous lagged valuation regressors – the dividend price ratio, earnings price ratio, and book-to-market ratio – to predict the median, shoulders, and tails of the stock return distribution.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"245 1","pages":"Article 105875"},"PeriodicalIF":9.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002203","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies inference in predictive quantile regressions when the predictive regressor has a near-unit root. We derive asymptotic distributions for the quantile regression estimator and its heteroskedasticity and autocorrelation consistent (HAC) t-statistic in terms of functionals of Ornstein–Uhlenbeck processes. We then propose a switching-fully modified (FM) predictive test for quantile predictability. The proposed test employs an FM style correction with a Bonferroni bound for the local-to-unity parameter when the predictor has a near unit root. It switches to a standard predictive quantile regression test with a slightly conservative critical value when the largest root of the predictor lies in the stationary range. Simulations indicate that the test has a reliable size in small samples and good power. We employ this new methodology to test the ability of three commonly employed, highly persistent and endogenous lagged valuation regressors – the dividend price ratio, earnings price ratio, and book-to-market ratio – to predict the median, shoulders, and tails of the stock return distribution.
预测性量化回归的推论
本文研究了预测性回归因子具有近单位根时的预测性量化回归推断。我们根据 Ornstein-Uhlenbeck 过程的函数推导出了量级回归估计器及其异方差和自相关一致(HAC)t 统计量的渐近分布。然后,我们提出了一种转换-完全修正(FM)的量子预测性检验。当预测因子具有近似单位根时,所提出的检验采用 FM 式修正,并对局部到单位参数进行 Bonferroni 约束。当预测因子的最大根位于静态范围内时,它将切换到标准预测性量化回归检验,临界值略显保守。模拟结果表明,该检验在小样本中具有可靠的规模和良好的功率。我们采用这一新方法检验了三个常用的、高度持久的内生滞后估值回归因子--股息价格比、盈利价格比和账面市值比--预测股票收益率分布的中位数、肩部和尾部的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信