{"title":"Triple ultraviolet to visible perfect absorptions of lifted metamaterial for highly sensitive sensing and slow light","authors":"Lili Yu , Jingsheng Jia , Ping Gu , Jing Chen , Chaojun Tang , Zhendong Yan","doi":"10.1016/j.physleta.2024.130057","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving multiple perfect absorptions from ultraviolet (UV) to near-infrared (IR) region is practically important for metamaterial-based efficient harvesting of photons and biosensor. Here, we theoretically demonstrate a triple narrow and broad perfect absorptions (PAs) from visible to UV range in a lifted metamaterial made of aluminum vertical split-ring resonators (Al VSRR) on silica nanostrip /Al mirror. The three simultaneously achieved narrowband and broadband PAs with bandwidth of 283.3 nm, 8.9 nm and 18.2 nm are excited from magnetic plasmon resonance, surface plasmons polariton and plasmon standing wave mode, respectively, which is further explained by the impedance matching theory. The triple-band absorption peaks are further tailored by changing the size of the structure. The group index of the lifted Al VSRR array can reach as large as 2.5 × 10<sup>3</sup> in the UV range. Moreover, due to the designed metamaterial being lifted with the reduced substrate effect, the figure of merit (<em>FoM</em>*) and sensitivity (<em>S</em>) in the UV range are as high as 1.1 × 10<sup>6</sup> and 306 nm per refractive index unit (306 nm/RIU), respectively. The proposed lifted metamaterial could have a considerable effect on the development of various UV plasmonic applications, including slow light nanodevices and optical sensor.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"528 ","pages":"Article 130057"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124007515","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving multiple perfect absorptions from ultraviolet (UV) to near-infrared (IR) region is practically important for metamaterial-based efficient harvesting of photons and biosensor. Here, we theoretically demonstrate a triple narrow and broad perfect absorptions (PAs) from visible to UV range in a lifted metamaterial made of aluminum vertical split-ring resonators (Al VSRR) on silica nanostrip /Al mirror. The three simultaneously achieved narrowband and broadband PAs with bandwidth of 283.3 nm, 8.9 nm and 18.2 nm are excited from magnetic plasmon resonance, surface plasmons polariton and plasmon standing wave mode, respectively, which is further explained by the impedance matching theory. The triple-band absorption peaks are further tailored by changing the size of the structure. The group index of the lifted Al VSRR array can reach as large as 2.5 × 103 in the UV range. Moreover, due to the designed metamaterial being lifted with the reduced substrate effect, the figure of merit (FoM*) and sensitivity (S) in the UV range are as high as 1.1 × 106 and 306 nm per refractive index unit (306 nm/RIU), respectively. The proposed lifted metamaterial could have a considerable effect on the development of various UV plasmonic applications, including slow light nanodevices and optical sensor.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.