Tumor detection in breast cancer pathology patches using a Multi-scale Multi-head Self-attention Ensemble Network on Whole Slide Images

Ruigang Ge , Guoyue Chen , Kazuki Saruta , Yuki Terata
{"title":"Tumor detection in breast cancer pathology patches using a Multi-scale Multi-head Self-attention Ensemble Network on Whole Slide Images","authors":"Ruigang Ge ,&nbsp;Guoyue Chen ,&nbsp;Kazuki Saruta ,&nbsp;Yuki Terata","doi":"10.1016/j.mlwa.2024.100592","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer (BC) is the most common type of cancer among women globally and is one of the leading causes of cancer-related deaths among women. In the diagnosis of BC, histopathological assessment is the gold standard, where automated tumor detection technologies play a pivotal role. Utilizing Convolutional Neural Networks (CNNs) for automated analysis of image patches from Whole Slide Images (WSIs) enhances detection accuracy and alleviates the workload of pathologists. However, CNNs often face limitations in handling pathological patches due to a lack of sufficient contextual information and limited feature generation capabilities. To address this, we propose a novel Multi-scale Multi-head Self-attention Ensemble Network (MMSEN), which integrates a multi-scale feature generation module, a convolutional self-attention module, and an adaptive feature integration with an output module, effectively optimizing the performance of classical CNNs. The design of MMSEN optimizes the capture of key information and the comprehensive integration of features in WSIs pathological patches, significantly enhancing the precision of tumor detection. Validation results from a five-fold cross-validation experiment on the PatchCamelyon (PCam) dataset demonstrate that MMSEN achieves a ROC-AUC of 99.01% ± 0.02%, an F1-score of 98.00% ± 0.08%, a Balanced Accuracy (B-Acc) of 98.00% ± 0.08%, and a Matthews Correlation Coefficient (MCC) of 96.00% ± 0.16% (<span><math><mrow><mi>p</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>05</mn></mrow></math></span>). These results demonstrate the effectiveness and potential of MMSEN in detecting tumors from pathological patches in WSIs for BC.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"18 ","pages":"Article 100592"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer (BC) is the most common type of cancer among women globally and is one of the leading causes of cancer-related deaths among women. In the diagnosis of BC, histopathological assessment is the gold standard, where automated tumor detection technologies play a pivotal role. Utilizing Convolutional Neural Networks (CNNs) for automated analysis of image patches from Whole Slide Images (WSIs) enhances detection accuracy and alleviates the workload of pathologists. However, CNNs often face limitations in handling pathological patches due to a lack of sufficient contextual information and limited feature generation capabilities. To address this, we propose a novel Multi-scale Multi-head Self-attention Ensemble Network (MMSEN), which integrates a multi-scale feature generation module, a convolutional self-attention module, and an adaptive feature integration with an output module, effectively optimizing the performance of classical CNNs. The design of MMSEN optimizes the capture of key information and the comprehensive integration of features in WSIs pathological patches, significantly enhancing the precision of tumor detection. Validation results from a five-fold cross-validation experiment on the PatchCamelyon (PCam) dataset demonstrate that MMSEN achieves a ROC-AUC of 99.01% ± 0.02%, an F1-score of 98.00% ± 0.08%, a Balanced Accuracy (B-Acc) of 98.00% ± 0.08%, and a Matthews Correlation Coefficient (MCC) of 96.00% ± 0.16% (p<0.05). These results demonstrate the effectiveness and potential of MMSEN in detecting tumors from pathological patches in WSIs for BC.
在整张切片图像上使用多尺度多头自注意集合网络检测乳腺癌病理斑块中的肿瘤
乳腺癌(BC)是全球妇女最常见的癌症类型,也是妇女因癌症死亡的主要原因之一。在乳腺癌的诊断中,组织病理学评估是金标准,而肿瘤自动检测技术在其中发挥着举足轻重的作用。利用卷积神经网络(CNN)对全切片图像(WSI)中的图像斑块进行自动分析,可以提高检测的准确性,减轻病理学家的工作量。然而,由于缺乏足够的上下文信息和有限的特征生成能力,CNN 在处理病理斑块时往往面临局限性。针对这一问题,我们提出了一种新颖的多尺度多头自注意集合网络(MMSEN),它集成了多尺度特征生成模块、卷积自注意模块和自适应特征集成输出模块,有效优化了经典 CNN 的性能。MMSEN 的设计优化了对 WSI 病理斑块中关键信息的捕捉和特征的综合集成,显著提高了肿瘤检测的精度。在 PatchCamelyon (PCam) 数据集上进行的五倍交叉验证实验的验证结果表明,MMSEN 的 ROC-AUC 为 99.01% ± 0.02%,F1 分数为 98.00% ± 0.08%,平衡精度 (B-Acc) 为 98.00% ± 0.08%,马修斯相关系数 (MCC) 为 96.00% ± 0.16%(p<0.05)。这些结果表明,MMSEN 可以有效地从 WSI 中的病理斑块检测出 BC 中的肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信