Optimally shaped nanotubes for field concentration

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Konstantinos V. Kostas , Constantinos Valagiannopoulos
{"title":"Optimally shaped nanotubes for field concentration","authors":"Konstantinos V. Kostas ,&nbsp;Constantinos Valagiannopoulos","doi":"10.1016/j.enganabound.2024.106022","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of concentrating electromagnetic fields into a nanotube from an ambient source of light, is considered. An isogeometric analysis approach, in a boundary element method setting, is employed to evaluate the local electric field, which is represented with the exact same basis functions used in the geometric representation of the nanotube. Subsequently, shape optimization of the nanotubes is performed with the aim of maximizing the field concentration in their interior. The optimization framework comprises: (i) one global optimizer implemented as the combination of a derivative-free guided random search approach and a gradient-based algorithm for accurately determining the shape at the final stages, (ii) one parametric modeler generating valid non-self-intersecting nanotube shapes with a relatively small number of parameters, and (iii) one isogeometric-enabled boundary element method solver approximating the value of the electric field on the nanotube with high accuracy. The optimal shapes for a wide range of optical sizes are determined, resulting in a collected energy enhancement of more than two orders of magnitude, compared to the respective circular designs. Importantly, the frequency and angular responses of selected optimal shapes tend to maintain their superior performance over extensive wavelength and directional bands. Therefore, the presented results may assist substantially the photonic inverse design in nanotube-based setups with applications spanning from field localization and power accumulation to wave steering and energy harvesting.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 106022"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004958","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of concentrating electromagnetic fields into a nanotube from an ambient source of light, is considered. An isogeometric analysis approach, in a boundary element method setting, is employed to evaluate the local electric field, which is represented with the exact same basis functions used in the geometric representation of the nanotube. Subsequently, shape optimization of the nanotubes is performed with the aim of maximizing the field concentration in their interior. The optimization framework comprises: (i) one global optimizer implemented as the combination of a derivative-free guided random search approach and a gradient-based algorithm for accurately determining the shape at the final stages, (ii) one parametric modeler generating valid non-self-intersecting nanotube shapes with a relatively small number of parameters, and (iii) one isogeometric-enabled boundary element method solver approximating the value of the electric field on the nanotube with high accuracy. The optimal shapes for a wide range of optical sizes are determined, resulting in a collected energy enhancement of more than two orders of magnitude, compared to the respective circular designs. Importantly, the frequency and angular responses of selected optimal shapes tend to maintain their superior performance over extensive wavelength and directional bands. Therefore, the presented results may assist substantially the photonic inverse design in nanotube-based setups with applications spanning from field localization and power accumulation to wave steering and energy harvesting.
用于场强集中的最佳形状纳米管
研究考虑了从环境光源向纳米管集中电磁场的问题。在边界元方法设置中,采用等几何分析方法来评估局部电场,该方法使用与纳米管几何表示法完全相同的基函数来表示局部电场。随后,对纳米管的形状进行优化,目的是使其内部的电场浓度最大化。优化框架包括:(i) 结合无导数引导随机搜索方法和基于梯度的算法实现的全局优化器,用于在最后阶段精确确定形状;(ii) 参数建模器,以相对较少的参数生成有效的非自相交纳米管形状;(iii) 支持等几何的边界元素法求解器,高精度地近似纳米管上的电场值。确定了适用于各种光学尺寸的最佳形状,与相应的圆形设计相比,收集的能量提高了两个数量级以上。重要的是,所选最佳形状的频率和角度响应往往能在广泛的波长和方向频段内保持其卓越性能。因此,本文介绍的结果可能对基于纳米管的光子反向设计有很大帮助,其应用范围包括场定位、功率积累、波转向和能量收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信