{"title":"Reinforced stable matching for Crowd-Sourced Delivery Systems under stochastic driver acceptance behavior","authors":"Shixuan Hou , Chun Wang , Jie Gao","doi":"10.1016/j.trc.2024.104916","DOIUrl":null,"url":null,"abstract":"<div><div>Crowd-Sourced Delivery Systems (CDS) depend on occasional drivers to deliver parcels directly to online customers. These freelance drivers have the flexibility to accept or reject orders from the platform, leading to a stochastic and often unstable matching process for delivery assignments. This instability results in frequent rematching, delayed deliveries, decreased customer satisfaction, and increased operational costs, all highlighting the critical need for improved matching stability within CDS. While traditional stable matching theory provides a foundation, it primarily addresses static and deterministic scenarios, making it less effective in the dynamic and unpredictable environments typical of CDS. Addressing this gap, this study extends the classic Gale–Shapley (GS) stable matching algorithm by incorporating tailored compensations for drivers, incentivizing them to accept assigned orders and thus improving the stability of matchings, even with the inherent uncertainties of driver acceptance. We prove that the proposed mechanism can generate reinforced stable matching results based on tailored compensation values. Also, our numerical study shows that this reinforced stable matching approach significantly outperforms traditional methods in terms of both matching stability and cost-effectiveness. It reduces the order rejection rate to as low as 1% and cuts operational costs by up to 18%.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"170 ","pages":"Article 104916"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24004376","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Crowd-Sourced Delivery Systems (CDS) depend on occasional drivers to deliver parcels directly to online customers. These freelance drivers have the flexibility to accept or reject orders from the platform, leading to a stochastic and often unstable matching process for delivery assignments. This instability results in frequent rematching, delayed deliveries, decreased customer satisfaction, and increased operational costs, all highlighting the critical need for improved matching stability within CDS. While traditional stable matching theory provides a foundation, it primarily addresses static and deterministic scenarios, making it less effective in the dynamic and unpredictable environments typical of CDS. Addressing this gap, this study extends the classic Gale–Shapley (GS) stable matching algorithm by incorporating tailored compensations for drivers, incentivizing them to accept assigned orders and thus improving the stability of matchings, even with the inherent uncertainties of driver acceptance. We prove that the proposed mechanism can generate reinforced stable matching results based on tailored compensation values. Also, our numerical study shows that this reinforced stable matching approach significantly outperforms traditional methods in terms of both matching stability and cost-effectiveness. It reduces the order rejection rate to as low as 1% and cuts operational costs by up to 18%.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.