New disordered phases of the (s,1/2)-mixed spin Ising model for arbitrary spin s

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hasan Akın
{"title":"New disordered phases of the (s,1/2)-mixed spin Ising model for arbitrary spin s","authors":"Hasan Akın","doi":"10.1016/j.chaos.2024.115733","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce an Ising model with mixed spin <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span> (abbreviated as <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM) for any spin set <span><math><mrow><mrow><mo>[</mo><mo>−</mo><mi>s</mi><mo>,</mo><mi>s</mi><mo>]</mo></mrow><mo>∩</mo><mi>Z</mi></mrow></math></span> on a semi-infinite second-order Cayley tree and construct translation-invariant splitting Gibbs measures (TISGMs) associated with the model. We prove that as the weight of the <span><math><mi>s</mi></math></span>-spin value increases, the repelling region of the fixed point <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></msubsup></math></span>, corresponding to the TISGM, expands, leading to a broadening of the phase transition region. We also study tree-indexed Markov chains associated with the <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM. Additionally, we clarify the extremality of the associated disordered phases by utilizing the method of Martinelli, Sinclair, and Weitz (Martinelli et al., 2007). By examining the non-extremality of the disordered phases related to the <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM on the Cayley tree using the Kesten–Stigum condition, we extend previous research findings to encompass any set of spins in <span><math><mrow><mrow><mo>[</mo><mo>−</mo><mi>s</mi><mo>,</mo><mi>s</mi><mo>]</mo></mrow><mo>∩</mo><mi>Z</mi></mrow></math></span>. Furthermore, we prove that as the weight of the <span><math><mi>s</mi></math></span>-spin value increases, the region where the disordered phase corresponding to the <span><math><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-MSIM is extreme narrows, while the region where it is non-extreme widens.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115733"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012852","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce an Ising model with mixed spin (s,1/2) (abbreviated as (s,1/2)-MSIM) for any spin set [s,s]Z on a semi-infinite second-order Cayley tree and construct translation-invariant splitting Gibbs measures (TISGMs) associated with the model. We prove that as the weight of the s-spin value increases, the repelling region of the fixed point 0(s), corresponding to the TISGM, expands, leading to a broadening of the phase transition region. We also study tree-indexed Markov chains associated with the (s,1/2)-MSIM. Additionally, we clarify the extremality of the associated disordered phases by utilizing the method of Martinelli, Sinclair, and Weitz (Martinelli et al., 2007). By examining the non-extremality of the disordered phases related to the (s,1/2)-MSIM on the Cayley tree using the Kesten–Stigum condition, we extend previous research findings to encompass any set of spins in [s,s]Z. Furthermore, we prove that as the weight of the s-spin value increases, the region where the disordered phase corresponding to the (s,1/2)-MSIM is extreme narrows, while the region where it is non-extreme widens.
任意自旋 s 的 (s,1/2) 混合自旋伊辛模型的新无序相
本文针对半无限二阶卡莱树上的任意自旋集[-s,s]∩Z,引入了具有混合自旋(s,1/2)的伊辛模型(简称为(s,1/2)-MSIM),并构建了与该模型相关的平移不变分裂吉布斯量(TISGM)。我们证明,随着 s-旋值权重的增加,与 TISGM 相对应的定点 ℓ0(s) 的排斥区域会扩大,从而导致相变区域的扩大。我们还研究了与 (s,1/2)-MSIM 相关的树索引马尔可夫链。此外,我们还利用 Martinelli、Sinclair 和 Weitz(Martinelli 等人,2007 年)的方法澄清了相关无序相的极端性。通过使用 Kesten-Stigum 条件检验与凯利树上的 (s,1/2)-MSIM 相关的无序相的非极端性,我们扩展了之前的研究成果,使其涵盖 [-s,s]∩Z 中的任何自旋集。此外,我们还证明了随着 s-自旋值权重的增加,与 (s,1/2)-MSIM 相对应的无序相极端化区域会缩小,而非极端化区域会扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信