{"title":"Molecular mechanism underlying the protective effects of ischemic preconditioning in total knee arthroplasty.","authors":"Yongli Wang, Bencai Du, Xueliang Han, Lianjun Qu","doi":"10.1016/j.cjtee.2024.02.007","DOIUrl":null,"url":null,"abstract":"<p><strong>Propose: </strong>To investigate the molecular mechanisms underlying the protective effects of ischemic preconditioning (IPC) in patients undergoing total knee arthroplasty.</p><p><strong>Methods: </strong>GSE21164 was extracted from an online database, followed by an investigation of differentially expressed genes (DEGs) between IPC treatment samples at 2 time points (T0T and T1T). Function and pathway enrichment analyses were performed on the DEGs. A protein-protein interaction network was constructed to identify hub genes according to 5 different algorithms, followed by enrichment analysis. In addition, long noncoding RNAs (lncRNAs) were identified between the T0T and T1T samples. Furthermore, a competing endogenous RNA network was predicted based on the identified lncRNA-messenger RNA (mRNA), lncRNA-microRNA (miRNA), and mRNA-miRNA relationships revealed in this study. Finally, a drug-gene network was investigated. Statistical analyses were performed using GraphPad Prism 8.0. Differences between groups were determined using an unpaired t-test. p < 0.05 was considered significant.</p><p><strong>Results: </strong>A total of 343 DEGs at T0 and 10 DEGs at T1 were identified and compared with their respective control groups, followed by 100 DEGs between T0T and T1T. Based on these 100 DEGs, protein-protein interaction network analysis revealed 9 hub genes, mainly with mitochondria-related functions and the carbon metabolism pathway. Six differentially expressed lncRNAs were investigated between T0T and T1T. A competing endogenous RNA network was constructed using 259 lncRNA-miRNA-mRNA interactions, including alpha-2-macroglobulin antisense RNA 1-miR-7161-5p-iron-sulfur cluster scaffold. Finally, 13 chemical drugs associated with the hub genes were explored.</p><p><strong>Conclusion: </strong>Iron-sulfur cluster scaffold may promote IPC-induced ischemic tolerance mediated by alpha-2-macroglobulin antisense RNA 1-miR-7161-5p axis. Moreover, IPC may induce a protective response after total knee arthroplasty via mitochondria-related functions and the carbon metabolism pathway, which should be further validated in the near future.</p>","PeriodicalId":51555,"journal":{"name":"Chinese Journal of Traumatology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Traumatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cjtee.2024.02.007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Propose: To investigate the molecular mechanisms underlying the protective effects of ischemic preconditioning (IPC) in patients undergoing total knee arthroplasty.
Methods: GSE21164 was extracted from an online database, followed by an investigation of differentially expressed genes (DEGs) between IPC treatment samples at 2 time points (T0T and T1T). Function and pathway enrichment analyses were performed on the DEGs. A protein-protein interaction network was constructed to identify hub genes according to 5 different algorithms, followed by enrichment analysis. In addition, long noncoding RNAs (lncRNAs) were identified between the T0T and T1T samples. Furthermore, a competing endogenous RNA network was predicted based on the identified lncRNA-messenger RNA (mRNA), lncRNA-microRNA (miRNA), and mRNA-miRNA relationships revealed in this study. Finally, a drug-gene network was investigated. Statistical analyses were performed using GraphPad Prism 8.0. Differences between groups were determined using an unpaired t-test. p < 0.05 was considered significant.
Results: A total of 343 DEGs at T0 and 10 DEGs at T1 were identified and compared with their respective control groups, followed by 100 DEGs between T0T and T1T. Based on these 100 DEGs, protein-protein interaction network analysis revealed 9 hub genes, mainly with mitochondria-related functions and the carbon metabolism pathway. Six differentially expressed lncRNAs were investigated between T0T and T1T. A competing endogenous RNA network was constructed using 259 lncRNA-miRNA-mRNA interactions, including alpha-2-macroglobulin antisense RNA 1-miR-7161-5p-iron-sulfur cluster scaffold. Finally, 13 chemical drugs associated with the hub genes were explored.
Conclusion: Iron-sulfur cluster scaffold may promote IPC-induced ischemic tolerance mediated by alpha-2-macroglobulin antisense RNA 1-miR-7161-5p axis. Moreover, IPC may induce a protective response after total knee arthroplasty via mitochondria-related functions and the carbon metabolism pathway, which should be further validated in the near future.
期刊介绍:
Chinese Journal of Traumatology (CJT, ISSN 1008-1275) was launched in 1998 and is a peer-reviewed English journal authorized by Chinese Association of Trauma, Chinese Medical Association. It is multidisciplinary and designed to provide the most current and relevant information for both the clinical and basic research in the field of traumatic medicine. CJT primarily publishes expert forums, original papers, case reports and so on. Topics cover trauma system and management, surgical procedures, acute care, rehabilitation, post-traumatic complications, translational medicine, traffic medicine and other related areas. The journal especially emphasizes clinical application, technique, surgical video, guideline, recommendations for more effective surgical approaches.