{"title":"Developing WasteSAM: A novel approach for accurate construction waste image segmentation to facilitate efficient recycling.","authors":"Seokjae Heo, Seunguk Na","doi":"10.1177/0734242X241290743","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating volume of construction activities and resultant waste generation underscores the imperative for developing sophisticated segmentation models to facilitate efficient sorting and recycling processes. This study introduces WasteSAM, an enhanced iteration of the segment anything model (SAM), specifically tailored to address the intricate complexities inherent in construction waste imagery. Drawing upon a comprehensive dataset comprising over 15,000 masks representing five distinct categories of construction materials, WasteSAM exhibits notably superior segmentation capabilities. Quantitative analysis demonstrates significant performance improvements, with WasteSAM outperforming the original SAM model by an average of 23.9% in dice similarity coefficient and 30.0% in normalized surface distance metrics. The integration of stereo-image techniques in refining the training dataset has facilitated WasteSAM in more accurately discerning the three-dimensional structure of waste materials, thereby augmenting the precision of waste classification. Noteworthy is the model's adeptness in handling intricate textures and patterns across diverse imaging modalities, including varying lighting conditions and complex object interactions. While showing promising results, this study also highlights the need for high-quality, diverse datasets that reflect real-world construction site complexities, rather than merely larger datasets.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241290743"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241290743","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating volume of construction activities and resultant waste generation underscores the imperative for developing sophisticated segmentation models to facilitate efficient sorting and recycling processes. This study introduces WasteSAM, an enhanced iteration of the segment anything model (SAM), specifically tailored to address the intricate complexities inherent in construction waste imagery. Drawing upon a comprehensive dataset comprising over 15,000 masks representing five distinct categories of construction materials, WasteSAM exhibits notably superior segmentation capabilities. Quantitative analysis demonstrates significant performance improvements, with WasteSAM outperforming the original SAM model by an average of 23.9% in dice similarity coefficient and 30.0% in normalized surface distance metrics. The integration of stereo-image techniques in refining the training dataset has facilitated WasteSAM in more accurately discerning the three-dimensional structure of waste materials, thereby augmenting the precision of waste classification. Noteworthy is the model's adeptness in handling intricate textures and patterns across diverse imaging modalities, including varying lighting conditions and complex object interactions. While showing promising results, this study also highlights the need for high-quality, diverse datasets that reflect real-world construction site complexities, rather than merely larger datasets.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.