Light enhanced cytotoxicity and antitumoral effect of a ruthenium-based photosensitizer inspired from natural alkaloids.

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gennaro Sanità, Maria Laura Alfieri, Barbara Carrese, Serena Damian, Vincenza Mele, Gaetano Calì, Brigida Silvestri, Sebastiano Marra, Susan Mohammadi, Giuseppina Luciani, Paola Manini, Annalisa Lamberti
{"title":"Light enhanced cytotoxicity and antitumoral effect of a ruthenium-based photosensitizer inspired from natural alkaloids.","authors":"Gennaro Sanità, Maria Laura Alfieri, Barbara Carrese, Serena Damian, Vincenza Mele, Gaetano Calì, Brigida Silvestri, Sebastiano Marra, Susan Mohammadi, Giuseppina Luciani, Paola Manini, Annalisa Lamberti","doi":"10.1039/d4md00600c","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we report on the synthesis and properties of a new sensitizer for photodynamic therapy applications, constituted by a ruthenium(ii) complex (1) featuring a ligand inspired from natural isoquinoline alkaloids. The spectroscopic analysis revealed that 1 is characterized by an intense red emission (<i>λ</i> <sub>em</sub> = 620 nm, <i>Φ</i> = 0.17) when excited at 550 nm, a low energy radiation warranting for a safe therapeutic approach. The phototoxicity of 1 on human breast cancer (Hs578T) and melanoma (A375) cell lines was assessed after irradiation using a LED lamp (525 nm, total fluence 10 J cm<sup>-2</sup>). <i>In vitro</i> biological assays indicated that the cytotoxicity of 1 was significantly enhanced by light reaching IC<sub>50</sub> values below the micromolar threshold. The cell damage induced by 1 proved to be strictly connected with the overproduction of reactive oxygen species (ROS) responsible for mitochondrial dysfunction leading to the activation of caspases and then to apoptosis, and for DNA photocleavage leading to cell cycle arrest.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565246/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00600c","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we report on the synthesis and properties of a new sensitizer for photodynamic therapy applications, constituted by a ruthenium(ii) complex (1) featuring a ligand inspired from natural isoquinoline alkaloids. The spectroscopic analysis revealed that 1 is characterized by an intense red emission (λ em = 620 nm, Φ = 0.17) when excited at 550 nm, a low energy radiation warranting for a safe therapeutic approach. The phototoxicity of 1 on human breast cancer (Hs578T) and melanoma (A375) cell lines was assessed after irradiation using a LED lamp (525 nm, total fluence 10 J cm-2). In vitro biological assays indicated that the cytotoxicity of 1 was significantly enhanced by light reaching IC50 values below the micromolar threshold. The cell damage induced by 1 proved to be strictly connected with the overproduction of reactive oxygen species (ROS) responsible for mitochondrial dysfunction leading to the activation of caspases and then to apoptosis, and for DNA photocleavage leading to cell cycle arrest.

从天然生物碱中得到启发的钌基光敏剂的光增强细胞毒性和抗肿瘤作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信