Phenotypic and genomic characterization of ST11-K1 CR-hvKP with highly homologous blaKPC-2-bearing plasmids in China.

IF 5 2区 生物学 Q1 MICROBIOLOGY
mSystems Pub Date : 2024-11-18 DOI:10.1128/msystems.01101-24
Yu-Ling Han, Hua Wang, Hong-Zhe Zhu, Ying-Ying Lv, Wen Zhao, Yan-Yan Wang, Jian-Xun Wen, Zhi-De Hu, Jun-Rui Wang, Wen-Qi Zheng
{"title":"Phenotypic and genomic characterization of ST11-K1 CR-hvKP with highly homologous <i>bla</i><sub>KPC-2</sub>-bearing plasmids in China.","authors":"Yu-Ling Han, Hua Wang, Hong-Zhe Zhu, Ying-Ying Lv, Wen Zhao, Yan-Yan Wang, Jian-Xun Wen, Zhi-De Hu, Jun-Rui Wang, Wen-Qi Zheng","doi":"10.1128/msystems.01101-24","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenem-resistant hypervirulent <i>Klebsiella pneumoniae</i> (CR-hvKP) strains present a significant global public health threat due to their high mortality rates. This study investigated the genomic characteristics of seven ST11-K1 CR-hvKP isolates harboring highly homologous KPC-2-encoding multidrug-resistance plasmids. The strains were isolated from a Chinese tertiary hospital between 2017 and 2020. Whole-genome sequencing and bioinformatic analysis revealed various antibiotic resistance genes (ARGs) and virulence determinants. The <i>bla</i><sub>KPC-2</sub>-bearing plasmids that contain multiple antibiotic-resistance genes were also identified in these strains. ISfinder and Orifinder were applied to identify insertion sequences (IS) and conjugation-related factors among these <i>bla</i><sub>KPC-2</sub>-bearing plasmids. The <i>bla</i><sub>KPC-2</sub> was highly consistent in seven <i>bla</i><sub>KPC-2</sub>-bearing plasmids (IS<i>Kpn6-bla</i><sub>KPC-2</sub>-IS<i>Kpn27</i>-IS<i>Yps3</i>-IS<i>26</i>). In addition, we found a region composed of IS<i>IR</i>, Tn<i>5393</i>, and IS<i>26</i>. It was located upstream of the <i>bla</i><sub>CTX-M-15</sub> gene and presented in six <i>bla</i><sub>KPC-2</sub>-bearing plasmids, with pCR-hvKP221-KPC-P3 as an exception. Conjugation experiments demonstrated the horizontal transfer of resistance plasmids pCR-hvKP128-KPC-P1 and pCR-hvKP132-KPC-P1 across species. Notably, pLVPK-like virulence plasmids carrying virulence gene clusters pCR-hvKP173-Vir-P1, and pCR-hvKP221-Vir-P1 were also detected. A fusional plasmid pCR-hvKP221-Vir-P2, which carries virulence gene clusters and ARGs, was also identified. Five CR-hvKP strains displayed enhanced biofilm formation and high virulence <i>in vivo</i> infection models. Phylogenetic and single nucleotide polymorphism (SNP) analyses indicated a close genetic relationship among the isolates, suggesting a subclade. These findings highlight the complex genetic profiles and potential transmission mechanisms of CR-hvKP strains.</p><p><strong>Importance: </strong>We reported seven CR-hvKP strains all carried a highly homologous <i>bla</i><sub>KPC-2</sub> integrated IncFⅡ-resistant plasmid, and two strains harbored virulence plasmids. Conjugation experiments confirmed the transferability of these plasmids, indicating a potential for resistance spread. Phylogenetic analysis clarified the relationship among the CR-hvKP isolates. This study provides insights into the phenotypic and genomic characteristics of seven ST11-K1 CR-hvKP strains. The high prevalence and potential for local outbreaks emphasize the need for effective control measures.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0110124"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01101-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) strains present a significant global public health threat due to their high mortality rates. This study investigated the genomic characteristics of seven ST11-K1 CR-hvKP isolates harboring highly homologous KPC-2-encoding multidrug-resistance plasmids. The strains were isolated from a Chinese tertiary hospital between 2017 and 2020. Whole-genome sequencing and bioinformatic analysis revealed various antibiotic resistance genes (ARGs) and virulence determinants. The blaKPC-2-bearing plasmids that contain multiple antibiotic-resistance genes were also identified in these strains. ISfinder and Orifinder were applied to identify insertion sequences (IS) and conjugation-related factors among these blaKPC-2-bearing plasmids. The blaKPC-2 was highly consistent in seven blaKPC-2-bearing plasmids (ISKpn6-blaKPC-2-ISKpn27-ISYps3-IS26). In addition, we found a region composed of ISIR, Tn5393, and IS26. It was located upstream of the blaCTX-M-15 gene and presented in six blaKPC-2-bearing plasmids, with pCR-hvKP221-KPC-P3 as an exception. Conjugation experiments demonstrated the horizontal transfer of resistance plasmids pCR-hvKP128-KPC-P1 and pCR-hvKP132-KPC-P1 across species. Notably, pLVPK-like virulence plasmids carrying virulence gene clusters pCR-hvKP173-Vir-P1, and pCR-hvKP221-Vir-P1 were also detected. A fusional plasmid pCR-hvKP221-Vir-P2, which carries virulence gene clusters and ARGs, was also identified. Five CR-hvKP strains displayed enhanced biofilm formation and high virulence in vivo infection models. Phylogenetic and single nucleotide polymorphism (SNP) analyses indicated a close genetic relationship among the isolates, suggesting a subclade. These findings highlight the complex genetic profiles and potential transmission mechanisms of CR-hvKP strains.

Importance: We reported seven CR-hvKP strains all carried a highly homologous blaKPC-2 integrated IncFⅡ-resistant plasmid, and two strains harbored virulence plasmids. Conjugation experiments confirmed the transferability of these plasmids, indicating a potential for resistance spread. Phylogenetic analysis clarified the relationship among the CR-hvKP isolates. This study provides insights into the phenotypic and genomic characteristics of seven ST11-K1 CR-hvKP strains. The high prevalence and potential for local outbreaks emphasize the need for effective control measures.

中国带有高度同源 blaKPC-2 质粒的 ST11-K1 CR-hvKP 的表型和基因组特征。
耐碳青霉烯类药物的高病毒性肺炎克雷伯氏菌(CR-hvKP)菌株因其高死亡率而对全球公共卫生构成重大威胁。本研究调查了 7 株 ST11-K1 CR-hvKP 分离株的基因组特征,这些分离株携带高度同源的 KPC-2 编码多重耐药质粒。这些菌株于 2017 年至 2020 年期间从一家中国三级医院分离出来。全基因组测序和生物信息学分析揭示了各种抗生素耐药基因(ARGs)和毒力决定因子。在这些菌株中还发现了含有多种抗生素耐药基因的 blaKPC-2 质粒。应用 ISfinder 和 Orifinder 在这些含有 blaKPC-2 的质粒中鉴定插入序列(IS)和共轭相关因子。在七个含有 blaKPC-2 的质粒(ISKpn6-blaKPC-2-ISKpn27-ISYps3-IS26)中,blaKPC-2 高度一致。此外,我们还发现了一个由 ISIR、Tn5393 和 IS26 组成的区域。它位于 blaCTX-M-15 基因的上游,出现在六个含有 blaKPC-2 的质粒中,pCR-hvKP221-KPC-P3 是个例外。共轭实验证明了抗性质粒 pCR-hvKP128-KPC-P1 和 pCR-hvKP132-KPC-P1 的跨物种水平转移。值得注意的是,还检测到了携带毒力基因簇 pCR-hvKP173-Vir-P1 和 pCR-hvKP221-Vir-P1 的类 pLVPK 毒力质粒。此外,还发现了携带毒力基因簇和 ARG 的融合质粒 pCR-hvKP221-Vir-P2。五株 CR-hvKP 菌株在体内感染模型中显示出更强的生物膜形成能力和高毒力。系统发育和单核苷酸多态性(SNP)分析表明,这些分离株之间存在密切的遗传关系,表明存在一个亚支系。这些发现凸显了CR-hvKP菌株复杂的遗传特征和潜在的传播机制:我们报告的七株CR-hvKP菌株均携带高度同源的blaKPC-2整合IncFⅡ抗性质粒,其中两株携带毒力质粒。共轭实验证实了这些质粒的可转移性,表明了抗药性传播的可能性。系统发育分析明确了 CR-hvKP 分离物之间的关系。这项研究深入揭示了七株 ST11-K1 CR-hvKP 菌株的表型和基因组特征。高流行率和局部爆发的可能性强调了采取有效控制措施的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
mSystems
mSystems Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍: mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信