A Novel Machine Learning Model to Predict Revision ACL Reconstruction Failure in the MARS Cohort.

IF 2.4 3区 医学 Q2 ORTHOPEDICS
Orthopaedic Journal of Sports Medicine Pub Date : 2024-11-14 eCollection Date: 2024-11-01 DOI:10.1177/23259671241291920
Kinjal Vasavada, Vrinda Vasavada, Jay Moran, Sai Devana, Changhee Lee, Sharon L Hame, Laith M Jazrawi, Orrin H Sherman, Laura J Huston, Amanda K Haas, Christina R Allen, Daniel E Cooper, Thomas M DeBerardino, Kurt P Spindler, Michael J Stuart, Annunziato Ned Amendola, Christopher C Annunziata, Robert A Arciero, Bernard R Bach, Champ L Baker, Arthur R Bartolozzi, Keith M Baumgarten, Jeffrey H Berg, Geoffrey A Bernas, Stephen F Brockmeier, Robert H Brophy, Charles A Bush-Joseph, J Brad Butler V, James L Carey, James E Carpenter, Brian J Cole, Jonathan M Cooper, Charles L Cox, R Alexander Creighton, Tal S David, Warren R Dunn, David C Flanigan, Robert W Frederick, Theodore J Ganley, Charles J Gatt, Steven R Gecha, James Robert Giffin, Jo A Hannafin, Norman Lindsay Harris, Keith S Hechtman, Elliott B Hershman, Rudolf G Hoellrich, David C Johnson, Timothy S Johnson, Morgan H Jones, Christopher C Kaeding, Ganesh V Kamath, Thomas E Klootwyk, Bruce A Levy, C Benjamin Ma, G Peter Maiers, Robert G Marx, Matthew J Matava, Gregory M Mathien, David R McAllister, Eric C McCarty, Robert G McCormack, Bruce S Miller, Carl W Nissen, Daniel F O'Neill, Brett D Owens, Richard D Parker, Mark L Purnell, Arun J Ramappa, Michael A Rauh, Arthur C Rettig, Jon K Sekiya, Kevin G Shea, James R Slauterbeck, Matthew V Smith, Jeffrey T Spang, Steven J Svoboda, Timothy N Taft, Joachim J Tenuta, Edwin M Tingstad, Armando F Vidal, Darius G Viskontas, Richard A White, James S Williams, Michelle L Wolcott, Brian R Wolf, Rick W Wright, James J York
{"title":"A Novel Machine Learning Model to Predict Revision ACL Reconstruction Failure in the MARS Cohort.","authors":"Kinjal Vasavada, Vrinda Vasavada, Jay Moran, Sai Devana, Changhee Lee, Sharon L Hame, Laith M Jazrawi, Orrin H Sherman, Laura J Huston, Amanda K Haas, Christina R Allen, Daniel E Cooper, Thomas M DeBerardino, Kurt P Spindler, Michael J Stuart, Annunziato Ned Amendola, Christopher C Annunziata, Robert A Arciero, Bernard R Bach, Champ L Baker, Arthur R Bartolozzi, Keith M Baumgarten, Jeffrey H Berg, Geoffrey A Bernas, Stephen F Brockmeier, Robert H Brophy, Charles A Bush-Joseph, J Brad Butler V, James L Carey, James E Carpenter, Brian J Cole, Jonathan M Cooper, Charles L Cox, R Alexander Creighton, Tal S David, Warren R Dunn, David C Flanigan, Robert W Frederick, Theodore J Ganley, Charles J Gatt, Steven R Gecha, James Robert Giffin, Jo A Hannafin, Norman Lindsay Harris, Keith S Hechtman, Elliott B Hershman, Rudolf G Hoellrich, David C Johnson, Timothy S Johnson, Morgan H Jones, Christopher C Kaeding, Ganesh V Kamath, Thomas E Klootwyk, Bruce A Levy, C Benjamin Ma, G Peter Maiers, Robert G Marx, Matthew J Matava, Gregory M Mathien, David R McAllister, Eric C McCarty, Robert G McCormack, Bruce S Miller, Carl W Nissen, Daniel F O'Neill, Brett D Owens, Richard D Parker, Mark L Purnell, Arun J Ramappa, Michael A Rauh, Arthur C Rettig, Jon K Sekiya, Kevin G Shea, James R Slauterbeck, Matthew V Smith, Jeffrey T Spang, Steven J Svoboda, Timothy N Taft, Joachim J Tenuta, Edwin M Tingstad, Armando F Vidal, Darius G Viskontas, Richard A White, James S Williams, Michelle L Wolcott, Brian R Wolf, Rick W Wright, James J York","doi":"10.1177/23259671241291920","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As machine learning becomes increasingly utilized in orthopaedic clinical research, the application of machine learning methodology to cohort data from the Multicenter ACL Revision Study (MARS) presents a valuable opportunity to translate data into patient-specific insights.</p><p><strong>Purpose: </strong>To apply novel machine learning methodology to MARS cohort data to determine a predictive model of revision anterior cruciate ligament reconstruction (rACLR) graft failure and features most predictive of failure.</p><p><strong>Study design: </strong>Cohort study; Level of evidence, 3.</p><p><strong>Methods: </strong>The authors prospectively recruited patients undergoing rACLR from the MARS cohort and obtained preoperative radiographs, surgeon-reported intraoperative findings, and 2- and 6-year follow-up data on patient-reported outcomes, additional surgeries, and graft failure. Machine learning models including logistic regression (LR), XGBoost, gradient boosting (GB), random forest (RF), and a validated ensemble algorithm (AutoPrognosis) were built to predict graft failure by 6 years postoperatively. Validated performance metrics and feature importance measures were used to evaluate model performance.</p><p><strong>Results: </strong>The cohort included 960 patients who completed 6-year follow-up, with 5.7% (n = 55) experiencing graft failure. AutoPrognosis demonstrated the highest discriminative power (model area under the receiver operating characteristic curve: AutoPrognosis, 0.703; RF, 0.618; GB, 0.660; XGBoost, 0.680; LR, 0.592), with well-calibrated scores (model Brier score: AutoPrognosis, 0.053; RF, 0.054; GB, 0.057; XGBoost, 0.058; LR, 0.111). The most important features for AutoPrognosis model performance were prior compromised femoral and tibial tunnels (placement and size) and allograft graft type used in current rACLR.</p><p><strong>Conclusion: </strong>The present study demonstrated the ability of the novel AutoPrognosis machine learning model to best predict the risk of graft failure in patients undergoing rACLR at 6 years postoperatively with moderate predictive ability. Femoral and tibial tunnel size and position in prior ACLR and allograft use in current rACLR were all risk factors for rACLR failure in the context of the AutoPrognosis model. This study describes a unique model that can be externally validated with larger data sets and contribute toward the creation of a robust rACLR bedside risk calculator in future studies.</p><p><strong>Registration: </strong>NCT00625885 (ClinicalTrials.gov identifier).</p>","PeriodicalId":19646,"journal":{"name":"Orthopaedic Journal of Sports Medicine","volume":"12 11","pages":"23259671241291920"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthopaedic Journal of Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23259671241291920","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: As machine learning becomes increasingly utilized in orthopaedic clinical research, the application of machine learning methodology to cohort data from the Multicenter ACL Revision Study (MARS) presents a valuable opportunity to translate data into patient-specific insights.

Purpose: To apply novel machine learning methodology to MARS cohort data to determine a predictive model of revision anterior cruciate ligament reconstruction (rACLR) graft failure and features most predictive of failure.

Study design: Cohort study; Level of evidence, 3.

Methods: The authors prospectively recruited patients undergoing rACLR from the MARS cohort and obtained preoperative radiographs, surgeon-reported intraoperative findings, and 2- and 6-year follow-up data on patient-reported outcomes, additional surgeries, and graft failure. Machine learning models including logistic regression (LR), XGBoost, gradient boosting (GB), random forest (RF), and a validated ensemble algorithm (AutoPrognosis) were built to predict graft failure by 6 years postoperatively. Validated performance metrics and feature importance measures were used to evaluate model performance.

Results: The cohort included 960 patients who completed 6-year follow-up, with 5.7% (n = 55) experiencing graft failure. AutoPrognosis demonstrated the highest discriminative power (model area under the receiver operating characteristic curve: AutoPrognosis, 0.703; RF, 0.618; GB, 0.660; XGBoost, 0.680; LR, 0.592), with well-calibrated scores (model Brier score: AutoPrognosis, 0.053; RF, 0.054; GB, 0.057; XGBoost, 0.058; LR, 0.111). The most important features for AutoPrognosis model performance were prior compromised femoral and tibial tunnels (placement and size) and allograft graft type used in current rACLR.

Conclusion: The present study demonstrated the ability of the novel AutoPrognosis machine learning model to best predict the risk of graft failure in patients undergoing rACLR at 6 years postoperatively with moderate predictive ability. Femoral and tibial tunnel size and position in prior ACLR and allograft use in current rACLR were all risk factors for rACLR failure in the context of the AutoPrognosis model. This study describes a unique model that can be externally validated with larger data sets and contribute toward the creation of a robust rACLR bedside risk calculator in future studies.

Registration: NCT00625885 (ClinicalTrials.gov identifier).

预测MARS队列中前交叉韧带重建失败的新型机器学习模型
背景:目的:将新型机器学习方法应用于MARS队列数据,以确定翻修前交叉韧带重建(rACLR)移植物失败的预测模型以及最能预测失败的特征:研究设计:队列研究;证据等级,3.方法:作者前瞻性地从MARS队列中招募了接受前交叉韧带重建术(rACLR)的患者,并获得了术前X光片、外科医生报告的术中发现以及患者报告的结果、额外手术和移植物失败的2年和6年随访数据。建立的机器学习模型包括逻辑回归(LR)、XGBoost、梯度提升(GB)、随机森林(RF)和经过验证的集合算法(AutoPrognosis),用于预测术后 6 年的移植物失败。经过验证的性能指标和特征重要性指标用于评估模型的性能:结果:队列包括960名完成6年随访的患者,其中5.7%(n = 55)的患者出现移植物失败。AutoPrognosis显示出最高的判别能力(模型的接收者操作特征曲线下面积为0.70):AutoPrognosis,0.703;RF,0.618;GB,0.660;XGBoost,0.680;LR,0.592),分数校准良好(模型 Brier score:AutoPrognosis,0.053;RF,0.054;GB,0.057;XGBoost,0.058;LR,0.111)。对 AutoPrognosis 模型性能最重要的特征是之前受损的股骨和胫骨隧道(位置和大小)以及当前 rACLR 中使用的同种异体移植物类型:本研究表明,新型 AutoPrognosis 机器学习模型能够预测接受 rACLR 患者术后 6 年的移植物失败风险,预测能力适中。在 AutoPrognosis 模型中,先前 ACLR 中股骨和胫骨隧道的大小和位置以及当前 rACLR 中异体移植物的使用都是导致 rACLR 失败的风险因素。这项研究描述了一个独特的模型,该模型可通过更大的数据集进行外部验证,并有助于在未来的研究中创建一个强大的rACLR床旁风险计算器:注册:NCT00625885(ClinicalTrials.gov 标识符)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Orthopaedic Journal of Sports Medicine
Orthopaedic Journal of Sports Medicine Medicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
7.70%
发文量
876
审稿时长
12 weeks
期刊介绍: The Orthopaedic Journal of Sports Medicine (OJSM), developed by the American Orthopaedic Society for Sports Medicine (AOSSM), is a global, peer-reviewed, open access journal that combines the interests of researchers and clinical practitioners across orthopaedic sports medicine, arthroscopy, and knee arthroplasty. Topics include original research in the areas of: -Orthopaedic Sports Medicine, including surgical and nonsurgical treatment of orthopaedic sports injuries -Arthroscopic Surgery (Shoulder/Elbow/Wrist/Hip/Knee/Ankle/Foot) -Relevant translational research -Sports traumatology/epidemiology -Knee and shoulder arthroplasty The OJSM also publishes relevant systematic reviews and meta-analyses. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信