Low-dimensional neural ordinary differential equations accounting for inter-individual variability implemented in Monolix and NONMEM.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Dominic Stefan Bräm, Bernhard Steiert, Marc Pfister, Britta Steffens, Gilbert Koch
{"title":"Low-dimensional neural ordinary differential equations accounting for inter-individual variability implemented in Monolix and NONMEM.","authors":"Dominic Stefan Bräm, Bernhard Steiert, Marc Pfister, Britta Steffens, Gilbert Koch","doi":"10.1002/psp4.13265","DOIUrl":null,"url":null,"abstract":"<p><p>Neural ordinary differential equations (NODEs) are an emerging machine learning (ML) method to model pharmacometric (PMX) data. Combining mechanism-based components to describe \"known parts\" and neural networks to learn \"unknown parts\" is a promising ML-based PMX approach. In this work, the implementation of low-dimensional NODEs in two widely applied PMX software packages (Monolix and NONMEM) is explained. Inter-individual variability is introduced to NODEs and proposals for the practical implementation of NODEs in such software are presented. The potential of such implementations is shown on various demonstrational datasets available in the Monolix model library, including pharmacokinetic (PK), pharmacodynamic (PD), target-mediated drug disposition (TMDD), and survival analyses. All datasets were fitted with NODEs in Monolix and NONMEM and showed comparable results to classical modeling approaches. Model codes for demonstrated PK, PKPD, TMDD applications are made available, allowing a reproducible and straight-forward implementation of NODEs in available PMX software packages.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13265","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Neural ordinary differential equations (NODEs) are an emerging machine learning (ML) method to model pharmacometric (PMX) data. Combining mechanism-based components to describe "known parts" and neural networks to learn "unknown parts" is a promising ML-based PMX approach. In this work, the implementation of low-dimensional NODEs in two widely applied PMX software packages (Monolix and NONMEM) is explained. Inter-individual variability is introduced to NODEs and proposals for the practical implementation of NODEs in such software are presented. The potential of such implementations is shown on various demonstrational datasets available in the Monolix model library, including pharmacokinetic (PK), pharmacodynamic (PD), target-mediated drug disposition (TMDD), and survival analyses. All datasets were fitted with NODEs in Monolix and NONMEM and showed comparable results to classical modeling approaches. Model codes for demonstrated PK, PKPD, TMDD applications are made available, allowing a reproducible and straight-forward implementation of NODEs in available PMX software packages.

在 Monolix 和 NONMEM 中实现了考虑个体间变异性的低维神经常微分方程。
神经常微分方程(NODE)是一种新兴的机器学习(ML)方法,用于为药物计量(PMX)数据建模。将描述 "已知部分 "的基于机制的组件与学习 "未知部分 "的神经网络相结合,是一种前景广阔的基于 ML 的 PMX 方法。在这项工作中,将解释如何在两个广泛应用的 PMX 软件包(Monolix 和 NONMEM)中实现低维 NODE。在 NODE 中引入了个体间变异性,并提出了在此类软件中实际实施 NODE 的建议。在 Monolix 模型库中的各种演示数据集上展示了这种实现的潜力,包括药代动力学(PK)、药效学(PD)、靶向介导药物处置(TMDD)和生存分析。所有数据集均用 Monolix 和 NONMEM 中的 NODEs 拟合,结果与经典建模方法相当。提供了用于演示 PK、PKPD 和 TMDD 应用的模型代码,使 NODEs 在现有 PMX 软件包中的实施具有可重复性且简单易行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信