Development and validation of a clinical prediction tool to estimate survival in community-dwelling adults living with dementia: a protocol.

IF 2.4 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Michael Bonares, Stacey Fisher, Anna Clarke, Katie Dover, Kieran Quinn, Nathan Stall, Sarina Isenberg, Peter Tanuseputro, Wenshan Li
{"title":"Development and validation of a clinical prediction tool to estimate survival in community-dwelling adults living with dementia: a protocol.","authors":"Michael Bonares, Stacey Fisher, Anna Clarke, Katie Dover, Kieran Quinn, Nathan Stall, Sarina Isenberg, Peter Tanuseputro, Wenshan Li","doi":"10.1136/bmjopen-2024-086231","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A clinical prediction tool to estimate life expectancy in community-dwelling individuals living with dementia could inform healthcare decision-making and prompt future planning. An existing Ontario-based tool for community-dwelling elderly individuals does not perform well in people living with dementia specifically. This study seeks to develop and validate a clinical prediction tool to estimate survival in community-dwelling individuals living with dementia receiving home care in Ontario, Canada.</p><p><strong>Methods and analysis: </strong>This will be a population-level retrospective cohort study that will use data in linked healthcare administrative databases at ICES. Specifically, data that are routinely collected from regularly administered assessments for home care will be used. Community-dwelling individuals living with dementia receiving home care at any point between April 2010 and March 2020 will be included (N≈200 000). The model will be developed in the derivation cohort (N≈140 000), which includes individuals with a randomly selected home care assessment between 2010 and 2017. The outcome variable will be survival time from index assessment. The selection of predictor variables will be fully prespecified and literature/expert-informed. The model will be estimated using a Cox proportional hazards model. The model's performance will be assessed in a temporally distinct validation cohort (N≈60 000), which includes individuals with an assessment between 2018 and 2020. Overall performance will be assessed using Nagelkerke's R<sup>2</sup>, discrimination using the concordance statistic and calibration using the calibration curve. Overfitting will be assessed visually and statistically. Model performance will be assessed in the validation cohort and in prespecified subgroups.</p><p><strong>Ethics and dissemination: </strong>The study received research ethics board approval from the Sunnybrook Health Sciences Centre (SUN-6138). Abstracts of the project will be submitted to academic conferences, and a manuscript thereof will be submitted to a peer-reviewed journal for publication. The model will be disseminated on a publicly accessible website (www.projectbiglife.com).</p><p><strong>Trial registration number: </strong>NCT06266325 (clinicaltrials.gov).</p>","PeriodicalId":9158,"journal":{"name":"BMJ Open","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjopen-2024-086231","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: A clinical prediction tool to estimate life expectancy in community-dwelling individuals living with dementia could inform healthcare decision-making and prompt future planning. An existing Ontario-based tool for community-dwelling elderly individuals does not perform well in people living with dementia specifically. This study seeks to develop and validate a clinical prediction tool to estimate survival in community-dwelling individuals living with dementia receiving home care in Ontario, Canada.

Methods and analysis: This will be a population-level retrospective cohort study that will use data in linked healthcare administrative databases at ICES. Specifically, data that are routinely collected from regularly administered assessments for home care will be used. Community-dwelling individuals living with dementia receiving home care at any point between April 2010 and March 2020 will be included (N≈200 000). The model will be developed in the derivation cohort (N≈140 000), which includes individuals with a randomly selected home care assessment between 2010 and 2017. The outcome variable will be survival time from index assessment. The selection of predictor variables will be fully prespecified and literature/expert-informed. The model will be estimated using a Cox proportional hazards model. The model's performance will be assessed in a temporally distinct validation cohort (N≈60 000), which includes individuals with an assessment between 2018 and 2020. Overall performance will be assessed using Nagelkerke's R2, discrimination using the concordance statistic and calibration using the calibration curve. Overfitting will be assessed visually and statistically. Model performance will be assessed in the validation cohort and in prespecified subgroups.

Ethics and dissemination: The study received research ethics board approval from the Sunnybrook Health Sciences Centre (SUN-6138). Abstracts of the project will be submitted to academic conferences, and a manuscript thereof will be submitted to a peer-reviewed journal for publication. The model will be disseminated on a publicly accessible website (www.projectbiglife.com).

Trial registration number: NCT06266325 (clinicaltrials.gov).

开发和验证临床预测工具,以估算居住在社区的成人痴呆症患者的存活率:一项协议。
导言:使用临床预测工具来估算居住在社区的痴呆症患者的预期寿命,可以为医疗保健决策提供信息,并促进未来规划。安大略省现有的一种针对社区居住老人的工具在痴呆症患者方面表现不佳。本研究旨在开发并验证一种临床预测工具,以估计加拿大安大略省接受家庭护理的社区痴呆症患者的存活率:本研究将是一项人口层面的回顾性队列研究,将使用 ICES 的链接医疗保健管理数据库中的数据。具体来说,将使用从定期进行的家庭护理评估中收集的常规数据。研究对象将包括在 2010 年 4 月至 2020 年 3 月期间接受家庭护理的社区痴呆患者(N≈200,000)。该模型将在衍生队列(N≈140 000)中开发,衍生队列包括在 2010 年至 2017 年期间接受随机选择的家庭护理评估的个人。结果变量将是指数评估后的存活时间。预测变量的选择将充分预设,并以文献/经验为依据。模型将使用 Cox 比例危险模型进行估计。该模型的性能将在时间上不同的验证队列(N≈60 000)中进行评估,验证队列包括在 2018 年至 2020 年期间进行评估的个体。总体性能将使用纳格尔克R2进行评估,判别将使用一致性统计量,校准将使用校准曲线。将以直观和统计的方式评估过拟合情况。模型性能将在验证队列和预先指定的分组中进行评估:该研究获得了桑尼布鲁克健康科学中心研究伦理委员会的批准(SUN-6138)。项目摘要将提交给学术会议,相关手稿将提交给同行评审期刊发表。该模型将在一个可公开访问的网站(www.projectbiglife.com)上发布。试验注册号:NCT06266325(NCT-6138):试验注册号:NCT06266325(clinicaltrials.gov)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMJ Open
BMJ Open MEDICINE, GENERAL & INTERNAL-
CiteScore
4.40
自引率
3.40%
发文量
4510
审稿时长
2-3 weeks
期刊介绍: BMJ Open is an online, open access journal, dedicated to publishing medical research from all disciplines and therapeutic areas. The journal publishes all research study types, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Publishing procedures are built around fully open peer review and continuous publication, publishing research online as soon as the article is ready.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信