Removal of cadmium ions from synthetic wastewater samples by copper ferrite magnetic nanoparticle–assisted batch-type adsorption-based removal strategy
{"title":"Removal of cadmium ions from synthetic wastewater samples by copper ferrite magnetic nanoparticle–assisted batch-type adsorption-based removal strategy","authors":"Buse Tuğba Zaman, Hilal Akbıyık, Ayça Girgin, Gamze Dalgıç Bozyiğit, Emine Gülhan Bakırdere, Sezgin Bakırdere","doi":"10.1007/s10661-024-13408-1","DOIUrl":null,"url":null,"abstract":"<div><p>Industrial activities can release a variety of harmful substances, including organic and inorganic components, into the environment. Inadequate treatment and discharge of these pollutants into aquatic environments might have adverse effects. Cadmium (Cd) is a toxic element found in various environmental sources, both anthropogenic and geogenic, which can contaminate soils and groundwater crucial for providing healthy food and safe drinking water. This study aimed to develop a novel strategy by the help of nano-sized adsorbents to remove cadmium ions from wastewater through batch-type adsorption processes. CuFe<sub>2</sub>O<sub>4</sub> nanoparticles having high magnetic properties were synthesized using a co-precipitation process for the efficient removal of analyte. Characterization of the nanomaterial was performed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. Method effective parameters were systematically optimized through univariate experiments to find proper conditions for the improvement of interaction between the adsorbent and cadmium ions. Removal efficiency (%RE) of Cd was assessed by using synthetic wastewater samples, and the accuracy/practicability of the recommended method proved highly efficient within the linear range of flame atomic absorption spectrophotometry (FAAS). In addition, the Langmuir isotherm model was applied to the experimental data, and the effective adsorption of cadmium from synthetic wastewater by the magnetic CuFe<sub>2</sub>O<sub>4</sub> nanoparticles was proved.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"196 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13408-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial activities can release a variety of harmful substances, including organic and inorganic components, into the environment. Inadequate treatment and discharge of these pollutants into aquatic environments might have adverse effects. Cadmium (Cd) is a toxic element found in various environmental sources, both anthropogenic and geogenic, which can contaminate soils and groundwater crucial for providing healthy food and safe drinking water. This study aimed to develop a novel strategy by the help of nano-sized adsorbents to remove cadmium ions from wastewater through batch-type adsorption processes. CuFe2O4 nanoparticles having high magnetic properties were synthesized using a co-precipitation process for the efficient removal of analyte. Characterization of the nanomaterial was performed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. Method effective parameters were systematically optimized through univariate experiments to find proper conditions for the improvement of interaction between the adsorbent and cadmium ions. Removal efficiency (%RE) of Cd was assessed by using synthetic wastewater samples, and the accuracy/practicability of the recommended method proved highly efficient within the linear range of flame atomic absorption spectrophotometry (FAAS). In addition, the Langmuir isotherm model was applied to the experimental data, and the effective adsorption of cadmium from synthetic wastewater by the magnetic CuFe2O4 nanoparticles was proved.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.