Yun Song , Jing Wang , Yajun Sun , Shijia Dong , Guangying Yu , Wenjing Lin , Yinhua Xiong , Yanhui Tan , Yanshi Xiong , Guijuan Jiang , Jintao Wang , Xiangwen Liao , Lianghong Liu
{"title":"Targeting bacterial efflux pump effectively enhances the efficacy of Ru-based antibacterial agents against Gram-negative pathogen","authors":"Yun Song , Jing Wang , Yajun Sun , Shijia Dong , Guangying Yu , Wenjing Lin , Yinhua Xiong , Yanhui Tan , Yanshi Xiong , Guijuan Jiang , Jintao Wang , Xiangwen Liao , Lianghong Liu","doi":"10.1016/j.jinorgbio.2024.112772","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of antibiotic resistance has posed a great threat to human's life, thus develop novel antibacterial agents is urgently needed. It worthies to noted that Ru-based antibacterial agents often showed robust potency against Gram-positive pathogens, disrupted bacterial membrane and avoided bacterial resistance, making they promising antibiotic candidates. However, they are generally less active when applied to negative pathogens. To address this problem, a Ru-based metalloantibiotic (<strong>RuN</strong>) modified with a nitrothiophene moiety, which can target bacterial efflux pump, was designed and evaluated in this work. A series of assays demonstrated that <strong>RuN</strong> not only fully retained the advantages of Ru-based agents, such as destroyed bacterial membrane and induced reactive oxygen species production, but also can targeted bacterial efflux pumps. Of course, these properties make it effective in killing both Gram-positive and negative pathogens, its MIC values against <em>Staphylococcus aureus</em> and <em>Escherichia coli</em> lies at 3.125 and 6.25 μg/mL, respectively. Importantly, <strong>RuN</strong> also showed low toxicity and has robust anti-infective potency in two animal infection models. Together, our results paved an alternative way to enhance the anti-infective efficacy of Ru-based agents against resistant negative bacteria.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"263 ","pages":"Article 112772"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424002976","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of antibiotic resistance has posed a great threat to human's life, thus develop novel antibacterial agents is urgently needed. It worthies to noted that Ru-based antibacterial agents often showed robust potency against Gram-positive pathogens, disrupted bacterial membrane and avoided bacterial resistance, making they promising antibiotic candidates. However, they are generally less active when applied to negative pathogens. To address this problem, a Ru-based metalloantibiotic (RuN) modified with a nitrothiophene moiety, which can target bacterial efflux pump, was designed and evaluated in this work. A series of assays demonstrated that RuN not only fully retained the advantages of Ru-based agents, such as destroyed bacterial membrane and induced reactive oxygen species production, but also can targeted bacterial efflux pumps. Of course, these properties make it effective in killing both Gram-positive and negative pathogens, its MIC values against Staphylococcus aureus and Escherichia coli lies at 3.125 and 6.25 μg/mL, respectively. Importantly, RuN also showed low toxicity and has robust anti-infective potency in two animal infection models. Together, our results paved an alternative way to enhance the anti-infective efficacy of Ru-based agents against resistant negative bacteria.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.