{"title":"MD-LAIs Software: Computing Whole-Sequence and Amino Acid-Level \"Embeddings\" for Peptides and Proteins.","authors":"Ernesto Contreras-Torres, Yovani Marrero-Ponce","doi":"10.1021/acs.jcim.3c01189","DOIUrl":null,"url":null,"abstract":"<p><p>Several computational tools have been developed to calculate sequence-based molecular descriptors (MDs) for peptides and proteins. However, these tools have certain limitations: 1) They generally lack capabilities for curating input data. 2) Their outputs often exhibit significant overlap. 3) There is limited availability of MDs at the amino acid (<i>aa</i>) level. 4) They lack flexibility in computing specific MDs. To address these issues, we developed <b>MD-LAIs</b> (<b>M</b>olecular <b>D</b>escriptors from <b>L</b>ocal <b>A</b>mino acid <b>I</b>nvariant<b>s</b>), Java-based software designed to compute both whole-sequence and <i>aa</i>-level MDs for peptides and proteins. These MDs are generated by applying aggregation operators (<b>AOs</b>) to macromolecular vectors containing the chemical-physical and structural properties of <i>aas</i>. The set of <b>AOs</b> includes both nonclassical (e.g., Minkowski norms) and classical <b>AOs</b> (e.g., Radial Distribution Function). Classical <b>AOs</b> capture neighborhood structural information at different <i>k</i> levels, while nonclassical <b>AOs</b> are applied using a sliding window to generalize the <i>aa</i>-level output. A weighting system based on fuzzy membership functions is also included to account for the contributions of individual <i>aas</i>. <b>MD-LAIs</b> features: 1) a module for data curation tasks, 2) a feature selection module, 3) projects of highly relevant MDs, and 4) low-dimensional lists of informative global and <i>aa</i>-level MDs. Overall, we expect that <b>MD-LAIs</b> will be a valuable tool for encoding protein or peptide sequences. The software is freely available as a stand-alone system on GitHub (https://github.com/Grupo-Medicina-Molecular-y-Traslacional/MD_LAIS).</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.3c01189","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Several computational tools have been developed to calculate sequence-based molecular descriptors (MDs) for peptides and proteins. However, these tools have certain limitations: 1) They generally lack capabilities for curating input data. 2) Their outputs often exhibit significant overlap. 3) There is limited availability of MDs at the amino acid (aa) level. 4) They lack flexibility in computing specific MDs. To address these issues, we developed MD-LAIs (Molecular Descriptors from Local Amino acid Invariants), Java-based software designed to compute both whole-sequence and aa-level MDs for peptides and proteins. These MDs are generated by applying aggregation operators (AOs) to macromolecular vectors containing the chemical-physical and structural properties of aas. The set of AOs includes both nonclassical (e.g., Minkowski norms) and classical AOs (e.g., Radial Distribution Function). Classical AOs capture neighborhood structural information at different k levels, while nonclassical AOs are applied using a sliding window to generalize the aa-level output. A weighting system based on fuzzy membership functions is also included to account for the contributions of individual aas. MD-LAIs features: 1) a module for data curation tasks, 2) a feature selection module, 3) projects of highly relevant MDs, and 4) low-dimensional lists of informative global and aa-level MDs. Overall, we expect that MD-LAIs will be a valuable tool for encoding protein or peptide sequences. The software is freely available as a stand-alone system on GitHub (https://github.com/Grupo-Medicina-Molecular-y-Traslacional/MD_LAIS).
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.