Comprehensive analysis of ferroptosis-related genes indicates that TRIM46 is a novel biomarker and promotes the progression of ovarian cancer via modulating ferroptosis and Wnt signaling pathway.
Shuang Liu, Chunmei Xiao, Yue Rong, Mingbo Liu, Ke Yang, Jing Tang, Zhigang Wang
{"title":"Comprehensive analysis of ferroptosis-related genes indicates that TRIM46 is a novel biomarker and promotes the progression of ovarian cancer via modulating ferroptosis and Wnt signaling pathway.","authors":"Shuang Liu, Chunmei Xiao, Yue Rong, Mingbo Liu, Ke Yang, Jing Tang, Zhigang Wang","doi":"10.62347/ONUY8904","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer (OC) is a common gynecological malignant tumor with poor prognosis. One form of controlled cell death that requires iron is ferroptosis. This study utilized TCGA data analysis to identify differentially expressed genes (DEGs) related to ferroptosis in OC, revealing 2,333 up-regulated and 4,073 down-regulated genes. Venn diagrams identified 64 up-regulated and 120 down-regulated ferroptosis-related DEGs (FR-DEGs), with 15 showing a significant correlation with overall patient survival. Further analyses explored the expression, mutations, and copy number variations of these 15 FR-DEGs across various cancer types, constructing interaction networks. Molecular subtypes in OC were classified using these 15 FR-DEGs, revealing two subtypes (C1 and C2). Survival analysis identified a risk model for the C1 group based on these genes. Experimental validation highlighted TRIM46 as a key gene, with knockdown inhibiting OC cell proliferation and migration. TRIM46 was also associated with changes in ferroptosis-related markers and demonstrated a close connection with the Wnt signaling pathway, validated through Western blot experiments. Overall, the study provided a comprehensive understanding of the role of DEGs related to ferroptosis in OC, offering valuable insights into disease mechanisms and potential therapeutic targets.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 10","pages":"4686-4707"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/ONUY8904","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer (OC) is a common gynecological malignant tumor with poor prognosis. One form of controlled cell death that requires iron is ferroptosis. This study utilized TCGA data analysis to identify differentially expressed genes (DEGs) related to ferroptosis in OC, revealing 2,333 up-regulated and 4,073 down-regulated genes. Venn diagrams identified 64 up-regulated and 120 down-regulated ferroptosis-related DEGs (FR-DEGs), with 15 showing a significant correlation with overall patient survival. Further analyses explored the expression, mutations, and copy number variations of these 15 FR-DEGs across various cancer types, constructing interaction networks. Molecular subtypes in OC were classified using these 15 FR-DEGs, revealing two subtypes (C1 and C2). Survival analysis identified a risk model for the C1 group based on these genes. Experimental validation highlighted TRIM46 as a key gene, with knockdown inhibiting OC cell proliferation and migration. TRIM46 was also associated with changes in ferroptosis-related markers and demonstrated a close connection with the Wnt signaling pathway, validated through Western blot experiments. Overall, the study provided a comprehensive understanding of the role of DEGs related to ferroptosis in OC, offering valuable insights into disease mechanisms and potential therapeutic targets.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.