{"title":"Engineering Exopolysaccharide Biosynthesis of <i>Shewanella oneidensis</i> to Promote Electroactive Biofilm Formation for Liquor Wastewater Treatment.","authors":"Zixuan You, Huan Yu, Baocai Zhang, Qijing Liu, Bo Xiong, Chao Li, Chunxiao Qiao, Longhai Dai, Jianxun Li, Wenwei Li, Guosheng Xin, Zhanying Liu, Feng Li, Hao Song","doi":"10.1021/acssynbio.4c00417","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial electrochemical systems (MESs), as a green and sustainable technology, can decompose organics in wastewater to recover bioelectricity. Electroactive biofilms, a microbial community structure encased in a self-produced matrix, play a decisive role in determining the efficiency of MESs. However, as an essential component of the biofilm matrix, the role of exopolysaccharides in electroactive biofilm formation and their influence on extracellular electron transfer (EET) have been rarely studied. Herein, to explore the effects of exopolysaccharides on biofilm formation and EET rate, we first inhibited the key genes responsible for exopolysaccharide biosynthesis (namely, <i>so_3171</i>, <i>so_3172</i>, <i>so_3177</i>, and <i>so_3178</i>) by using antisense RNA in <i>Shewanella oneidensis</i> MR-1. Then, to explore the underlying mechanisms why inhibition of exopolysaccharide synthesis could enhance biofilm formation and promote the EET rate, we characterized cell physiology and electrophysiology. The results showed inhibition of exopolysaccharide biosynthesis not only altered cell surface hydrophobicity and promoted intercellular adhesion and aggregation, but also increased biosynthesis of <i>c</i>-type cytochromes and decreased interfacial resistance, thus promoting electroactive biofilm formation and improving the EET rate of <i>S. oneidensis</i>. Lastly, to evaluate and intensify the capability of exopolysaccharide-reduced strains in harvesting electrical energy from actual liquor wastewater, engineered strain Δ3171-as3177 was further constructed to treat an actual thin stillage. The results showed that the output power density reached 380.98 mW m<sup>-2</sup>, 11.1-fold higher than that of WT strain, which exhibited excellent capability of harvesting electricity from actual liquor wastewater. This study sheds light on the underlying mechanism of how inhibition of exopolysaccharides impacts electroactive biofilm formation and EET rate, which suggested that regulating exopolysaccharide biosynthesis is a promising avenue for increasing the EET rate.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00417","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial electrochemical systems (MESs), as a green and sustainable technology, can decompose organics in wastewater to recover bioelectricity. Electroactive biofilms, a microbial community structure encased in a self-produced matrix, play a decisive role in determining the efficiency of MESs. However, as an essential component of the biofilm matrix, the role of exopolysaccharides in electroactive biofilm formation and their influence on extracellular electron transfer (EET) have been rarely studied. Herein, to explore the effects of exopolysaccharides on biofilm formation and EET rate, we first inhibited the key genes responsible for exopolysaccharide biosynthesis (namely, so_3171, so_3172, so_3177, and so_3178) by using antisense RNA in Shewanella oneidensis MR-1. Then, to explore the underlying mechanisms why inhibition of exopolysaccharide synthesis could enhance biofilm formation and promote the EET rate, we characterized cell physiology and electrophysiology. The results showed inhibition of exopolysaccharide biosynthesis not only altered cell surface hydrophobicity and promoted intercellular adhesion and aggregation, but also increased biosynthesis of c-type cytochromes and decreased interfacial resistance, thus promoting electroactive biofilm formation and improving the EET rate of S. oneidensis. Lastly, to evaluate and intensify the capability of exopolysaccharide-reduced strains in harvesting electrical energy from actual liquor wastewater, engineered strain Δ3171-as3177 was further constructed to treat an actual thin stillage. The results showed that the output power density reached 380.98 mW m-2, 11.1-fold higher than that of WT strain, which exhibited excellent capability of harvesting electricity from actual liquor wastewater. This study sheds light on the underlying mechanism of how inhibition of exopolysaccharides impacts electroactive biofilm formation and EET rate, which suggested that regulating exopolysaccharide biosynthesis is a promising avenue for increasing the EET rate.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.