{"title":"The \n \n α\n $\\alpha$\n -SQG patch problem is illposed in \n \n \n C\n \n 2\n ,\n β\n \n \n $C^{2,\\beta }$\n and \n \n \n W\n \n 2\n ,\n p\n \n \n $W^{2,p}$","authors":"Alexander Kiselev, Xiaoyutao Luo","doi":"10.1002/cpa.22236","DOIUrl":null,"url":null,"abstract":"<p>We consider the patch problem for the <span></span><math>\n <semantics>\n <mi>α</mi>\n <annotation>$\\alpha$</annotation>\n </semantics></math>-(surface quasi-geostrophic) SQG system with the values <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\alpha =0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>=</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation>$\\alpha = \\frac{1}{2}$</annotation>\n </semantics></math> being the 2D Euler and the SQG equations respectively. It is well-known that the Euler patches are globally wellposed in non-endpoint <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>β</mi>\n </mrow>\n </msup>\n <annotation>$C^{k,\\beta }$</annotation>\n </semantics></math> Hölder spaces, as well as in <span></span><math>\n <semantics>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <annotation>$W^{2,p}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo><</mo>\n <mi>p</mi>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1<p<\\infty$</annotation>\n </semantics></math> spaces. In stark contrast to the Euler case, we prove that for <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>α</mi>\n <mo><</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation>$0<\\alpha < \\frac{1}{2}$</annotation>\n </semantics></math>, the <span></span><math>\n <semantics>\n <mi>α</mi>\n <annotation>$\\alpha$</annotation>\n </semantics></math>-SQG patch problem is strongly illposed in <i>every</i> <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>β</mi>\n </mrow>\n </msup>\n <annotation>$C^{2,\\beta }$</annotation>\n </semantics></math> Hölder space with <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\beta <1$</annotation>\n </semantics></math>. Moreover, in a suitable range of regularity, the same strong illposedness holds for <i>every</i> <span></span><math>\n <semantics>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msup>\n <annotation>$W^{2,p}$</annotation>\n </semantics></math> Sobolev space unless <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p=2$</annotation>\n </semantics></math>.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 4","pages":"742-820"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22236","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the patch problem for the -(surface quasi-geostrophic) SQG system with the values and being the 2D Euler and the SQG equations respectively. It is well-known that the Euler patches are globally wellposed in non-endpoint Hölder spaces, as well as in , spaces. In stark contrast to the Euler case, we prove that for , the -SQG patch problem is strongly illposed in every Hölder space with . Moreover, in a suitable range of regularity, the same strong illposedness holds for every Sobolev space unless .