Alec Tristani, Lina‐María Guayacán‐Carrillo, Jean Sulem
{"title":"Data‐Driven Tools to Evaluate Support Pressure, Radial Displacements, and Face Extrusion for Tunnels Excavated in Elastoplastic Grounds","authors":"Alec Tristani, Lina‐María Guayacán‐Carrillo, Jean Sulem","doi":"10.1002/nag.3889","DOIUrl":null,"url":null,"abstract":"Two‐dimensional analysis of tunnel design based on the convergence–confinement method, although commonly used in tunnel design, may not always be applied. For example, in squeezing grounds, if the support is installed very close to the tunnel face, three‐dimensional numerical modeling is required but is computationally expensive. Therefore, it is usually performed before or after tunnel excavation. A machine learning approach is presented here as an alternative to costly computations. Two surrogate models are developed based on synthetic data. The first model aims to assess the support pressure and the radial displacement at equilibrium in the lining and the radial displacement occurring close to the face at the installation distance of the support. The second model is intended to compute the extrusion of the core considering an unlined gallery. It is assumed a circular tunnel excavated in a Mohr–Coulomb elastoplastic perfectly plastic ground under an initial isotropic stress state. In particular, the bagging method is applied to neural networks to enhance the generalization capability of the models. A good performance is obtained using relatively scarce datasets. The modeling of the surrogate models is explained from the creation of the synthetic datasets to the evaluation of their performance. Their limitations are discussed. In practice, these two machine learning tools should be helpful in the field during the excavation phase.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"1 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3889","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two‐dimensional analysis of tunnel design based on the convergence–confinement method, although commonly used in tunnel design, may not always be applied. For example, in squeezing grounds, if the support is installed very close to the tunnel face, three‐dimensional numerical modeling is required but is computationally expensive. Therefore, it is usually performed before or after tunnel excavation. A machine learning approach is presented here as an alternative to costly computations. Two surrogate models are developed based on synthetic data. The first model aims to assess the support pressure and the radial displacement at equilibrium in the lining and the radial displacement occurring close to the face at the installation distance of the support. The second model is intended to compute the extrusion of the core considering an unlined gallery. It is assumed a circular tunnel excavated in a Mohr–Coulomb elastoplastic perfectly plastic ground under an initial isotropic stress state. In particular, the bagging method is applied to neural networks to enhance the generalization capability of the models. A good performance is obtained using relatively scarce datasets. The modeling of the surrogate models is explained from the creation of the synthetic datasets to the evaluation of their performance. Their limitations are discussed. In practice, these two machine learning tools should be helpful in the field during the excavation phase.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.