Joint Optimization of Pricing, Dispatching and Repositioning in Ride-Hailing With Multiple Models Interplayed Reinforcement Learning

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhongyun Zhang;Lei Yang;Jiajun Yao;Chao Ma;Jianguo Wang
{"title":"Joint Optimization of Pricing, Dispatching and Repositioning in Ride-Hailing With Multiple Models Interplayed Reinforcement Learning","authors":"Zhongyun Zhang;Lei Yang;Jiajun Yao;Chao Ma;Jianguo Wang","doi":"10.1109/TKDE.2024.3464563","DOIUrl":null,"url":null,"abstract":"Popular ride-hailing products, such as DiDi, Uber and Lyft, provide people with transportation convenience. Pricing, order dispatching and vehicle repositioning are three tasks with tight correlation and complex interactions in ride-hailing platforms, significantly impacting each other’s decisions and demand distribution or supply distribution. However, no past work considered combining the three tasks to improve platform efficiency. In this paper, we exploit to optimize pricing, dispatching and repositioning strategies simultaneously. Such a new multi-stage decision-making problem is quite challenging because it involves complex coordination and lacks a unified problem model. To address this problem, we propose a novel \n<bold>J</b>\noint optimization framework of \n<bold>P</b>\nricing, \n<bold>D</b>\nispatching and \n<bold>R</b>\nepositioning (JPDR) integrating contextual bandit and multi-agent deep reinforcement learning. JPDR consists of two components, including a Soft Actor-Critic (SAC)-based centralized policy for dispatching and repositioning and a pricing strategy learned by a multi-armed contextual bandit algorithm based on the feedback from the former. The two components learn in a mutually guided way to achieve joint optimization because their updates are highly interdependent. Based on real-world data, we implement a realistic environment simulator. Extensive experiments conducted on it show our method outperforms state-of-the-art baselines in terms of both gross merchandise volume and success rate.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8593-8606"},"PeriodicalIF":8.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684492/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Popular ride-hailing products, such as DiDi, Uber and Lyft, provide people with transportation convenience. Pricing, order dispatching and vehicle repositioning are three tasks with tight correlation and complex interactions in ride-hailing platforms, significantly impacting each other’s decisions and demand distribution or supply distribution. However, no past work considered combining the three tasks to improve platform efficiency. In this paper, we exploit to optimize pricing, dispatching and repositioning strategies simultaneously. Such a new multi-stage decision-making problem is quite challenging because it involves complex coordination and lacks a unified problem model. To address this problem, we propose a novel J oint optimization framework of P ricing, D ispatching and R epositioning (JPDR) integrating contextual bandit and multi-agent deep reinforcement learning. JPDR consists of two components, including a Soft Actor-Critic (SAC)-based centralized policy for dispatching and repositioning and a pricing strategy learned by a multi-armed contextual bandit algorithm based on the feedback from the former. The two components learn in a mutually guided way to achieve joint optimization because their updates are highly interdependent. Based on real-world data, we implement a realistic environment simulator. Extensive experiments conducted on it show our method outperforms state-of-the-art baselines in terms of both gross merchandise volume and success rate.
利用多模型交互强化学习联合优化乘车服务的定价、调度和重新定位
滴滴、Uber 和 Lyft 等热门叫车产品为人们提供了交通便利。在打车平台中,定价、订单调度和车辆重新定位是三项关联紧密、相互作用复杂的任务,会对彼此的决策、需求分配或供给分配产生重大影响。然而,以往的研究还没有考虑将这三项任务结合起来以提高平台效率。在本文中,我们将同时优化定价、调度和重新定位策略。这种新的多阶段决策问题相当具有挑战性,因为它涉及复杂的协调,而且缺乏统一的问题模型。为了解决这个问题,我们提出了一个新颖的定价、调度和重新定位联合优化框架(JPDR),它整合了情境强盗和多代理深度强化学习。JPDR 由两部分组成,包括基于软行为批判(SAC)的集中调度和重新定位策略,以及基于前者反馈的多臂情境强盗算法学习的定价策略。这两个部分以相互引导的方式进行学习,以实现联合优化,因为它们的更新是高度相互依赖的。基于真实世界的数据,我们实现了一个现实环境模拟器。在此基础上进行的大量实验表明,我们的方法在商品总量和成功率方面都优于最先进的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信