{"title":"Adjacent-Scale Multimodal Fusion Networks for Semantic Segmentation of Remote Sensing Data","authors":"Xianping Ma;Xichen Xu;Xiaokang Zhang;Man-On Pun","doi":"10.1109/JSTARS.2024.3486906","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is a fundamental task in remote sensing image analysis. The accurate delineation of objects within such imagery serves as the cornerstone for a wide range of applications. To address this issue, edge detection, cross-modal data, large intraclass variability, and limited interclass variance must be considered. Traditional convolutional-neural-network-based models are notably constrained by their local receptive fields, Nowadays, transformer-based methods show great potential to learn features globally, while they ignore positional cues easily and are still unable to cope with multimodal data. Therefore, this work proposes an adjacent-scale multimodal fusion network (ASMFNet) for semantic segmentation of remote sensing data. ASMFNet stands out not only for its innovative interaction mechanism across adjacent-scale features, effectively capturing contextual cues while maintaining low computational complexity but also for its remarkable cross-modal capability. It seamlessly integrates different modalities, enriching feature representation. Its hierarchical scale attention (HSA) module bolsters the association between ground objects and their surrounding scenes through learning discriminative features at higher level abstractions, thereby linking the broad structural information. Adaptive modality fusion module is equipped by HSA with valuable insights into the interrelationships between cross-model data, and it assigns spatial weights at the pixel level and seamlessly integrates them into channel features to enhance fusion representation through an evaluation of modality importance via feature concatenation and filtering. Extensive experiments on representative remote sensing semantic segmentation datasets, including the ISPRS Vaihingen and Potsdam datasets, confirm the impressive performance of the proposed ASMFNet.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"20116-20128"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736654","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10736654/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic segmentation is a fundamental task in remote sensing image analysis. The accurate delineation of objects within such imagery serves as the cornerstone for a wide range of applications. To address this issue, edge detection, cross-modal data, large intraclass variability, and limited interclass variance must be considered. Traditional convolutional-neural-network-based models are notably constrained by their local receptive fields, Nowadays, transformer-based methods show great potential to learn features globally, while they ignore positional cues easily and are still unable to cope with multimodal data. Therefore, this work proposes an adjacent-scale multimodal fusion network (ASMFNet) for semantic segmentation of remote sensing data. ASMFNet stands out not only for its innovative interaction mechanism across adjacent-scale features, effectively capturing contextual cues while maintaining low computational complexity but also for its remarkable cross-modal capability. It seamlessly integrates different modalities, enriching feature representation. Its hierarchical scale attention (HSA) module bolsters the association between ground objects and their surrounding scenes through learning discriminative features at higher level abstractions, thereby linking the broad structural information. Adaptive modality fusion module is equipped by HSA with valuable insights into the interrelationships between cross-model data, and it assigns spatial weights at the pixel level and seamlessly integrates them into channel features to enhance fusion representation through an evaluation of modality importance via feature concatenation and filtering. Extensive experiments on representative remote sensing semantic segmentation datasets, including the ISPRS Vaihingen and Potsdam datasets, confirm the impressive performance of the proposed ASMFNet.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.