Bistatic SAR Automatic Target Recognition With Multichannel Multiview Feature Fusion Network

Zhe Geng;Wei Li;Xiang Yu;Daiyin Zhu
{"title":"Bistatic SAR Automatic Target Recognition With Multichannel Multiview Feature Fusion Network","authors":"Zhe Geng;Wei Li;Xiang Yu;Daiyin Zhu","doi":"10.1109/LGRS.2024.3491842","DOIUrl":null,"url":null,"abstract":"Bistatic synthetic aperture radar (SAR) with spatially separated transmitter (TX) and receiver (RX) is advantageous over monostatic SAR systems in trajectory flexibility and antistealth/antijamming capability. On the other hand, since bistatic SAR imaging involves more technical complexities and incurs higher cost, the research in the field of bistatic automatic target recognition (ATR) has been mainly relying on simulated SAR imagery. Reckoning with the lack of supporting database in the public domain, the researchers at Nanjing University of Aeronautics and Astronautics (NUAA) constructed a proprietary bistatic SAR database featuring multiple types of representative military vehicles with the self-developed miniSAR system. Moreover, a multichannel multiview feature fusion network (MMFFN) is devised by incorporating the vision transformer (ViT). The simulation results show that the proposed MMFFN offers a classification accuracy improvement of 4.86%–16.63% over the baseline network (i.e., the plain ViT) in a series of experiments featuring small-to-large observation angle deviations between the training and test data.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"21 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10744569/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bistatic synthetic aperture radar (SAR) with spatially separated transmitter (TX) and receiver (RX) is advantageous over monostatic SAR systems in trajectory flexibility and antistealth/antijamming capability. On the other hand, since bistatic SAR imaging involves more technical complexities and incurs higher cost, the research in the field of bistatic automatic target recognition (ATR) has been mainly relying on simulated SAR imagery. Reckoning with the lack of supporting database in the public domain, the researchers at Nanjing University of Aeronautics and Astronautics (NUAA) constructed a proprietary bistatic SAR database featuring multiple types of representative military vehicles with the self-developed miniSAR system. Moreover, a multichannel multiview feature fusion network (MMFFN) is devised by incorporating the vision transformer (ViT). The simulation results show that the proposed MMFFN offers a classification accuracy improvement of 4.86%–16.63% over the baseline network (i.e., the plain ViT) in a series of experiments featuring small-to-large observation angle deviations between the training and test data.
利用多通道多视角特征融合网络进行双向合成孔径雷达自动目标识别
与单静态合成孔径雷达系统相比,发射器(TX)和接收器(RX)在空间上分离的双静态合成孔径雷达(SAR)在轨迹灵活性和反隐身/反干扰能力方面更具优势。另一方面,由于双稳态合成孔径雷达成像涉及的技术更复杂,成本更高,因此双稳态自动目标识别(ATR)领域的研究主要依赖于模拟合成孔径雷达成像。南京航空航天大学的研究人员利用自主研发的微型合成孔径雷达(miniSAR)系统,建立了具有代表性的多种军用车辆的双曲面合成孔径雷达数据库。此外,还结合视觉变换器(ViT)设计了多通道多视角特征融合网络(MMFFN)。仿真结果表明,在训练数据和测试数据观测角度偏差由小到大的一系列实验中,所提出的 MMFFN 比基线网络(即普通 ViT)的分类准确率提高了 4.86%-16.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信