Ying Liu;Jin Liu;Xingye Li;Lai Wei;Zhongdai Wu;Bing Han;Wenjuan Dai
{"title":"Exploiting Discriminating Features for Fine-Grained Ship Detection in Optical Remote Sensing Images","authors":"Ying Liu;Jin Liu;Xingye Li;Lai Wei;Zhongdai Wu;Bing Han;Wenjuan Dai","doi":"10.1109/JSTARS.2024.3486210","DOIUrl":null,"url":null,"abstract":"Fine-grained remote sensing ship detection is crucial in a variety of fields, such as ship safety, marine environmental protection, and maritime traffic management. Despite recent progress, current research suffers from the following three major challenges: insufficient features representation, conflicts in shared features, and inappropriate anchor labeling strategy, which significantly impede accurate fine-grained ship detection. To address these issues, we propose FineShipNet as a solution. Specifically, we first propose a novel blend synchronization module, which aims to facilitate the coutilization of semantic information from top-level and bottom-level features and minimize information redundancy. Subsequently, the blend feature maps are fed into a novel polarized feature focusing module, which decouples the features used in classification and regression to create task-specific discriminating features maps. Meanwhile, we adopt the adaptive harmony anchor labeling and propose a novel metric, harmony score, to choose high-quality anchors that can effectively capture the discriminating features of the target. Extensive experiments on four fine-grained remote sensing ship datasets (HRSC2016, DOSR, FGSD2021, and ShipRSImageNet) demonstrate that our FineShipNet outperforms current state-of-the-art object detection methods, achieving superior performance with mean average precision scores of 81.3%, 68.5%, 85.7%, and 63.9%, respectively.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"20098-20115"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10733997","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10733997/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Fine-grained remote sensing ship detection is crucial in a variety of fields, such as ship safety, marine environmental protection, and maritime traffic management. Despite recent progress, current research suffers from the following three major challenges: insufficient features representation, conflicts in shared features, and inappropriate anchor labeling strategy, which significantly impede accurate fine-grained ship detection. To address these issues, we propose FineShipNet as a solution. Specifically, we first propose a novel blend synchronization module, which aims to facilitate the coutilization of semantic information from top-level and bottom-level features and minimize information redundancy. Subsequently, the blend feature maps are fed into a novel polarized feature focusing module, which decouples the features used in classification and regression to create task-specific discriminating features maps. Meanwhile, we adopt the adaptive harmony anchor labeling and propose a novel metric, harmony score, to choose high-quality anchors that can effectively capture the discriminating features of the target. Extensive experiments on four fine-grained remote sensing ship datasets (HRSC2016, DOSR, FGSD2021, and ShipRSImageNet) demonstrate that our FineShipNet outperforms current state-of-the-art object detection methods, achieving superior performance with mean average precision scores of 81.3%, 68.5%, 85.7%, and 63.9%, respectively.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.