Evgenii Ievlev, Michael R. R. Good, Paul C. W. Davies
{"title":"Electron-mirror duality and thermality","authors":"Evgenii Ievlev, Michael R. R. Good, Paul C. W. Davies","doi":"10.1140/epjc/s10052-024-13557-0","DOIUrl":null,"url":null,"abstract":"<div><p>Classical electromagnetic radiation from moving point charges is foundational, but the thermal dynamics responsible for classical acceleration temperature are poorly understood. We investigate the thermal properties of classical electromagnetic radiation in the context of the correspondence between accelerated electrons and moving mirrors, focusing on three trajectories with asymptotically infinite (Davies–Fulling), asymptotically zero (Walker–Davies), and eternally uniform acceleration. The latter two are argued not to be thermal, while the former is found to emit thermal photons with a temperature that depends on the electron’s speed. Thermal radiation occurs in the absence of jerk.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13557-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13557-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Classical electromagnetic radiation from moving point charges is foundational, but the thermal dynamics responsible for classical acceleration temperature are poorly understood. We investigate the thermal properties of classical electromagnetic radiation in the context of the correspondence between accelerated electrons and moving mirrors, focusing on three trajectories with asymptotically infinite (Davies–Fulling), asymptotically zero (Walker–Davies), and eternally uniform acceleration. The latter two are argued not to be thermal, while the former is found to emit thermal photons with a temperature that depends on the electron’s speed. Thermal radiation occurs in the absence of jerk.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.